Markov modelling and stochastic identification for nonlinear ship rolling in random waves

A physically based averaging procedure is applied to a stochastic nonlinear single-degree-of-freedom equation for ship rolling, leading to a one-dimensional continuous Markov model for the energy envelope of the roll motion. It is shown that this model enables various statistics of the roll response to be estimated, including its stationary distribution and the mean time for the energy to reach a critical level. Moreover, it is demonstrated that the Markov model can be used as the basis of a new stochastic identification technique for estimating the spectrum of the excitation, and the nonlinear damping moment, from measurements of the roll response alone.

[1]  Marcello Vasta,et al.  Parametric identification of systems with non-Gaussian excitation using measured response spectra , 2000 .

[2]  Nikolai K. Moshchuk,et al.  Asymptotic expansion of ship capsizing in random sea waves. I: First-order approximation , 1995 .

[3]  J O Flower,et al.  APPLICATION OF THE DESCRIBING FUNCTION TECHNIQUE TO NON-LINEAR ROLLING IN RANDOM WAVES , 1978 .

[4]  J. Roberts,et al.  First-passage probabilities for randomly excited systems: Diffusion methods , 1986 .

[5]  W. Pierson,et al.  ON THE MOTIONS OF SHIPS IN CONFUSED SEAS , 1953 .

[6]  J. Roberts,et al.  Response of an oscillator with non-linear damping and a softening spring to non-white random excitation , 1986 .

[7]  Armin W. Troesch,et al.  HIGHLY NONLINEAR ROLLING MOTION OF BIASED SHIPS IN RANDOM BEAM SEAS , 1996 .

[8]  P. Spanos,et al.  Stochastic averaging: An approximate method of solving random vibration problems , 1986 .

[9]  Peter J. Gawthrop,et al.  PARAMETRIC IDENTIFICATION TECHNIQUES FOR ROLL DECREMENT DATA , 1991 .

[10]  J. M. T. Thompson,et al.  The transient capsize diagram ― A new method of quantifying stability in waves , 1991 .

[11]  G. Trincas,et al.  A multiscale analysis of nonlinear rolling , 1987 .

[12]  Alberto Francescutto,et al.  Ultraharmonics and subharmonics in the rolling motion of a ship: Steady-state solution1 , 1981 .

[13]  S. Hsieh,et al.  A nonlinear probabilistic method for predicting vessel capsizing in random beam seas , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  J. M. T. Thompson,et al.  Ship stability criteria based on chaotic transients from incursive fractals , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[16]  J. M. T. Thompson,et al.  Wave tank testing and the capsizability of hulls , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  Lyssimachos A. Vassilopoulos The application of statistical theory of nonlinear systems to ship motion performance in random seas1 , 1967 .

[18]  Lawrence N. Virgin,et al.  A new approach to the overturning stability of floating structures , 1994 .

[19]  Response of Non-Linear Oscillators to Non-White Random Excitation Using an Energy Based Method , 2001 .

[20]  J. Roberts,et al.  ESTIMATION OF NON-LINEAR SHIP ROLL DAMPING FROM FREE-DECAY DATA , 1983 .

[21]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[22]  I. Çankaya,et al.  Generalized Harmonic Analysis of Nonlinear Ship Roll Dynamics , 1996 .

[23]  Julian F Dunne,et al.  Estimation of Ship Roll Parameters in Random Waves , 1992 .

[24]  R. G. Medhurst,et al.  Topics in the Theory of Random Noise , 1969 .

[25]  Peter J. Gawthrop,et al.  ESTIMATION OF SHIP ROLL PARAMETERS FROM MOTION IN IRREGULAR SEAS , 1990 .

[26]  Local Similarity in Nonlinear Random Vibration , 1999 .

[27]  T. Caughey Nonlinear Theory of Random Vibrations , 1971 .

[28]  Jeffrey M. Falzarano,et al.  Complete Six-Degrees-of-Freedom Nonlinear Ship Rolling Motion , 1994 .

[29]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[30]  B RobertsJ,et al.  Roll Motion of a Ship in Random Beam Waves: Comparison Between Theory and Experiment , 1985 .

[31]  Peter J. Gawthrop,et al.  PARAMETRIC IDENTIFICATION OF NONLINEAR SHIP ROLL MOTION FROM FORCED ROLL DATA , 1988 .

[32]  A. Nayfeh,et al.  NONLINEAR COUPLING OF PITCH AND ROLL MODES IN SHIP MOTIONS , 1973 .

[33]  Julian F Dunne,et al.  Stochastic estimation methods for non-linear ship roll motion , 1994 .

[34]  J. M. T. Thompson,et al.  Transient and steady state analysis of capsize phenomena , 1991 .

[35]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[36]  Marcello Vasta,et al.  Stochastic parameter estimation of non-linear systems using only higher order spectra of the measured response , 1998 .

[37]  Julian F Dunne,et al.  A spectral method for estimation of non-linear system parameters from measured response , 1995 .

[38]  L. Virgin THE NONLINEAR ROLLING RESPONSE OF A VESSEL INCLUDING CHAOTIC MOTIONS LEADING TO CAPSIZE IN REGULAR SEAS , 1987 .

[39]  J. Thompson,et al.  Mechanics of ship capsize under direct and parametric wave excitation , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[40]  M R Haddara MODIFIED APPROACH FOR THE APPLICATION OF FOKKER-PLANK EQUATION TO THE NONLINEAR SHIP MOTIONS IN RANDOM WAVES , 1974 .