Evaluating 3D local descriptors for future LIDAR missiles with automatic target recognition capabilities

ABSTRACT Future light detection and ranging seeker missiles incorporating 3D automatic target recognition (ATR) capabilities can improve the missile’s effectiveness in complex battlefield environments. Considering the progress of local 3D descriptors in the computer vision domain, this paper evaluates a number of these on highly credible simulated air-to-ground missile engagement scenarios. The latter take into account numerous parameters that have not been investigated yet by the literature including variable missile – target range, 6-degrees-of-freedom missile motion and atmospheric disturbances. Additionally, the evaluation process utilizes our suggested 3D ATR architecture that compared to current pipelines involves more post-processing layers aiming at further enhancing 3D ATR performance. Our trials reveal that computer vision algorithms are appealing for missile-oriented 3D ATR.

[1]  R. Basri,et al.  Direct visibility of point sets , 2007, SIGGRAPH 2007.

[2]  Richard M. Marino,et al.  Pose-Independent Automatic Target Detection and Recognition Using 3D Laser Radar Imagery , 2005 .

[3]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[4]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jijun Luo,et al.  Ground target recognition based on imaging LADAR point cloud data , 2012 .

[7]  Nabil Aouf,et al.  Histogram of distances for local surface description , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Adolfo Comerón,et al.  Scintillation and beam-wander analysis in an optical ground station-satellite uplink. , 2004, Applied optics.

[9]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[10]  Luís A. Alexandre 3D Descriptors for Object and Category Recognition: a Comparative Evaluation , 2012 .

[11]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[12]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[13]  Ko Nishino,et al.  3D Geometric Scale Variability in Range Images: Features and Descriptors , 2012, International Journal of Computer Vision.

[14]  Zoltan-Csaba Marton,et al.  Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation , 2012, IEEE Robotics & Automation Magazine.

[15]  Fredrik Gustafsson,et al.  Ground Target Recognition Using Rectangle Estimation , 2006, IEEE Transactions on Image Processing.

[16]  Babak Taati,et al.  Local shape descriptor selection for object recognition in range data , 2011, Comput. Vis. Image Underst..

[17]  Mohammed Bennamoun,et al.  A novel local surface feature for 3D object recognition under clutter and occlusion , 2015, Inf. Sci..

[18]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Christina Grönwall Ground Object Recognition using Laser Radar Data : Geometric Fitting, Performance Analysis, and Applications , 2006 .

[20]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[21]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[22]  Mohammed Bennamoun,et al.  TriSI: A Distinctive Local Surface Descriptor for 3D Modeling and Object Recognition , 2016, GRAPP/IVAPP.

[23]  Markus Vincze,et al.  A Global Hypotheses Verification Method for 3D Object Recognition , 2012, ECCV.

[24]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[25]  Simon Roy,et al.  Baseline processing pipeline for fast automatic target detection and recognition in airborne 3D ladar imagery , 2011, Defense + Commercial Sensing.

[26]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.