Visual sense of number vs. sense of magnitude in humans and machines

[1]  S. Harnad Symbol grounding problem , 1991, Scholarpedia.

[2]  Stevan Harnad,et al.  Symbol grounding problem , 1990, Scholarpedia.

[3]  Pooja Viswanathan,et al.  Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices , 2013, Proceedings of the National Academy of Sciences.

[4]  Qi Zhang,et al.  The thermal signature of a submerged jet impacting normal to a free surface , 2016, J. Vis..

[5]  Ariel Starr,et al.  The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement , 2017, Cognition.

[6]  P. Berkes,et al.  Statistically Optimal Perception and Learning: from Behavior to Neural Representations , 2022 .

[7]  Melissa E. Libertus,et al.  Hysteresis-induced changes in preverbal infants’ approximate number precision , 2018, Cognitive Development.

[8]  Walter F. Stenning,et al.  AN EMPIRICAL STUDY , 2003 .

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  Tali Leibovich,et al.  The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. , 2016, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[11]  Alberto Testolin,et al.  The Challenge of Modeling the Acquisition of Mathematical Concepts , 2020, Frontiers in Human Neuroscience.

[12]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[13]  Surya Ganguli,et al.  A deep learning framework for neuroscience , 2019, Nature Neuroscience.

[14]  Marco Zorzi,et al.  Emergence of a 'visual number sense' in hierarchical generative models , 2012, Nature Neuroscience.

[15]  Elizabeth M. Brannon,et al.  Modeling the approximate number system to quantify the contribution of visual stimulus features , 2015, Cognition.

[16]  F. Kingdom,et al.  A common visual metric for approximate number and density , 2011, Proceedings of the National Academy of Sciences.

[17]  A. Henik,et al.  The contribution of fish studies to the “number sense” debate , 2016, Behavioral and Brain Sciences.

[18]  D. Burr,et al.  Different reaction-times for subitizing, estimation, and texture. , 2019, Journal of vision.

[19]  Bert Reynvoet,et al.  The interplay between nonsymbolic number and its continuous visual properties. , 2012, Journal of experimental psychology. General.

[20]  Samuel J Cheyette,et al.  A primarily serial, foveal accumulator underlies approximate numerical estimation , 2019, Proceedings of the National Academy of Sciences.

[21]  Manuela Piazza,et al.  Neurocognitive start-up tools for symbolic number representations , 2010, Trends in Cognitive Sciences.

[22]  Justin Halberda,et al.  Journal of Experimental Psychology : General Hysteresis Affects Approximate Number Discrimination in Young Children , 2012 .

[23]  Ivilin Peev Stoianov,et al.  Number skills are maintained in healthy ageing , 2014, Cognitive Psychology.

[24]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.

[25]  Michael Schneider,et al.  Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. , 2017, Developmental science.

[26]  Stanislas Dehaene,et al.  Distinct Cerebral Pathways for Object Identity and Number in Human Infants , 2008, PLoS biology.

[27]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[28]  Andrea Facoetti,et al.  Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia , 2010, Cognition.

[29]  James L. McClelland,et al.  Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics. , 2020, Developmental science.

[30]  Andreas Nieder,et al.  Number detectors spontaneously emerge in a deep neural network designed for visual object recognition , 2019, Science Advances.

[31]  E. Spelke,et al.  Infants' Discrimination of Number vs. Continuous Extent , 2002, Cognitive Psychology.

[32]  Stefano Severi,et al.  Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block , 2019, eLife.

[33]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[34]  S. Pollmann,et al.  Retinotopic Activation in Response to Subjective Contours in Primary Visual Cortex , 2008, Frontiers in human neuroscience.

[35]  A. Nieder The neuronal code for number , 2016, Nature Reviews Neuroscience.

[36]  J. Cantlon,et al.  Shared System for Ordering Small and Large Numbers in Monkeys and Humans , 2006, Psychological science.

[37]  R. Cohen Kadosh,et al.  Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. , 2016, Acta psychologica.

[38]  Yarden Gliksman,et al.  Size Perception and the Foundation of Numerical Processing , 2017 .

[39]  Alessandro Sperduti,et al.  Learning Orthographic Structure With Sequential Generative Neural Networks , 2016, Cogn. Sci..

[40]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[41]  Christine Schiltz,et al.  The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG , 2020, Proceedings of the National Academy of Sciences.

[42]  E. Spelke,et al.  Newborn infants perceive abstract numbers , 2009, Proceedings of the National Academy of Sciences.

[43]  Titia Gebuis,et al.  Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009) , 2011, Cognition.

[44]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[45]  David C. Burr,et al.  Separate Mechanisms for Perception of Numerosity and Density , 2014, Psychological science.

[46]  Neil Marlow,et al.  Individual Differences in Inhibitory Control, Not Non-Verbal Number Acuity, Correlate with Mathematics Achievement , 2013, PloS one.

[47]  Ananthram Swami,et al.  The Limitations of Deep Learning in Adversarial Settings , 2015, 2016 IEEE European Symposium on Security and Privacy (EuroS&P).

[48]  Elizabeth M. Brannon,et al.  Numerosity processing in early visual cortex , 2017, NeuroImage.

[49]  Halina T. Kobryn,et al.  Dynamic Stability of Coral Reefs on the West Australian Coast , 2013, PloS one.

[50]  Joonkoo Park,et al.  Rapid and Direct Encoding of Numerosity in the Visual Stream. , 2015, Cerebral cortex.

[51]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[52]  M. Goodale,et al.  The visual brain in action , 1995 .

[53]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[54]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[55]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[56]  Michael S. Okun,et al.  Three-Year Gait and Axial Outcomes of Bilateral STN and GPi Parkinson’s Disease Deep Brain Stimulation , 2020, Frontiers in Human Neuroscience.

[57]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[58]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[59]  Zhangwei Chen,et al.  Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography , 2015, 1502.00569.

[60]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[61]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[62]  Marco Zorzi,et al.  Understanding Dyslexia Through Personalized Large-Scale Computational Models , 2019, Psychological science.

[63]  Kelly S. Mix,et al.  Number Versus Contour Length in Infants' Discrimination of Small Visual Sets , 1999 .

[64]  Justin Halberda,et al.  Number sense across the lifespan as revealed by a massive Internet-based sample , 2012, Proceedings of the National Academy of Sciences.

[65]  Jason Weston,et al.  Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks , 2015, ICLR.

[66]  Pushmeet Kohli,et al.  Analysing Mathematical Reasoning Abilities of Neural Models , 2019, ICLR.

[67]  Thomas L. Dean,et al.  Neural Networks and Neuroscience-Inspired Computer Vision , 2014, Current Biology.

[68]  C. Corradi-Dell’Acqua,et al.  Beyond unpleasantness. Social exclusion affects the experience of pain, but not of equally-unpleasant disgust , 2018, Cognition.

[69]  Michele De Filippo De Grazia,et al.  Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists , 2013, Front. Psychol..

[70]  Daniel A. Braun,et al.  A sensorimotor paradigm for Bayesian model selection , 2012, Front. Hum. Neurosci..

[71]  Li Su,et al.  A Toolbox for Representational Similarity Analysis , 2014, PLoS Comput. Biol..

[72]  Daniel Ansari,et al.  Probing the nature of deficits in the 'Approximate Number System' in children with persistent Developmental Dyscalculia. , 2016, Developmental science.

[73]  Alberto Testolin,et al.  An emergentist perspective on the origin of number sense , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  F. Schmidt Meta-Analysis , 2008 .

[75]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[76]  C R Gallistel,et al.  Numerical Subtraction in the Pigeon: Evidence for a Linear Subjective Number Scale , 2001, Psychological science.

[77]  Alessandro Sperduti,et al.  Neural Networks for Sequential Data: a Pre-training Approach based on Hidden Markov Models , 2015, Neurocomputing.

[78]  Alberto Testolin,et al.  Modeling language and cognition with deep unsupervised learning: a tutorial overview , 2013, Front. Psychol..

[79]  Matthew Inglis,et al.  Indexing the approximate number system. , 2014, Acta psychologica.

[80]  Stefano Panzeri,et al.  Learning to focus on number , 2018, Cognition.

[81]  Julian Jara-Ettinger,et al.  Universal and uniquely human factors in spontaneous number perception , 2017, Nature Communications.

[82]  Brian Butterworth,et al.  The Mathematical Brain , 1999 .

[83]  Guido Marco Cicchini,et al.  Spontaneous perception of numerosity in humans , 2016, Nature Communications.

[84]  Marco Dadda,et al.  Do fish count? Spontaneous discrimination of quantity in female mosquitofish , 2008, Animal Cognition.

[85]  Alberto Testolin,et al.  Letter perception emerges from unsupervised deep learning and recycling of natural image features , 2017, Nature Human Behaviour.

[86]  Alberto Testolin,et al.  Numerosity Representation in InfoGAN: An Empirical Study , 2019, IWANN.

[87]  A. Ishai,et al.  Recollection- and Familiarity-Based Decisions Reflect Memory Strength , 2008, Frontiers in systems neuroscience.

[88]  Fei Xu,et al.  Number sense in human infants. , 2005, Developmental science.

[89]  Elizabeth M. Brannon,et al.  Malleability of the approximate number system: effects of feedback and training , 2012, Front. Hum. Neurosci..

[90]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.