Sharp Time–Data Tradeoffs for Linear Inverse Problems

In this paper, we characterize sharp time–data tradeoffs for optimization problems used for solving linear inverse problems. We focus on the minimization of a least-squares objective subject to a constraint defined as the sub-level set of a penalty function. We present a unified convergence analysis of the gradient projection algorithm applied to such problems. We sharply characterize the convergence rate associated with a wide variety of random measurement ensembles in terms of the number of measurements and structural complexity of the signal with respect to the chosen penalty function. The results apply to both convex and nonconvex constraints, demonstrating that a linear convergence rate is attainable even though the least squares objective is not strongly convex in these settings. When specialized to Gaussian measurements our results show that such linear convergence occurs when the number of measurements is merely four times the minimal number required to recover the desired signal at all (also known as the phase transition). We also achieve a slower but geometric rate of convergence precisely above the phase transition point. Extensive numerical results suggest that the derived rates exactly match the empirical performance.

[1]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[2]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[3]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[4]  Y. Gordon On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .

[5]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[6]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[7]  M. Talagrand The Generic Chaining , 2005 .

[8]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[9]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[10]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[13]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[14]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[15]  David L. Donoho,et al.  High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..

[16]  D. Donoho,et al.  Thresholds for the Recovery of Sparse Solutions via L1 Minimization , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[17]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[18]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[19]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[20]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[21]  S. Mendelson,et al.  Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .

[22]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[23]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[24]  Rayan Saab,et al.  Stable sparse approximations via nonconvex optimization , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[25]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  David L. Donoho,et al.  Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Jieping Ye,et al.  An accelerated gradient method for trace norm minimization , 2009, ICML '09.

[28]  Mihailo Stojnic,et al.  Various thresholds for ℓ1-optimization in compressed sensing , 2009, ArXiv.

[29]  VershyninRoman,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2009 .

[30]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[31]  M. Stojnic Various thresholds for $\ell_1$-optimization in compressed sensing , 2009 .

[32]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[33]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparsity Recovery in the High-Dimensional and Noisy Setting , 2007, IEEE Transactions on Information Theory.

[34]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[35]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[36]  Rahul Garg,et al.  Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property , 2009, ICML '09.

[37]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[38]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[39]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[40]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[41]  Holger Rauhut,et al.  The Gelfand widths of lp-balls for 0p<=1 , 2010, J. Complex..

[42]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[43]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[44]  Pablo A. Parrilo,et al.  Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[45]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.

[46]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[47]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[48]  Martin J. Wainwright,et al.  Fast global convergence rates of gradient methods for high-dimensional statistical recovery , 2010, NIPS.

[49]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[50]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[51]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[52]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[53]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[54]  Weiyu Xu,et al.  Null space conditions and thresholds for rank minimization , 2011, Math. Program..

[55]  Bhiksha Raj,et al.  A unifying analysis of projected gradient descent for ℓp-constrained least squares , 2011, 1107.4623.

[56]  Babak Hassibi,et al.  Tight recovery thresholds and robustness analysis for nuclear norm minimization , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[57]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[58]  Andrea Montanari,et al.  The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.

[59]  Andrea Montanari,et al.  Universality in Polytope Phase Transitions and Message Passing Algorithms , 2012, ArXiv.

[60]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[61]  Alekh Agarwal,et al.  Computational Trade-offs in Statistical Learning , 2012 .

[62]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[63]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[64]  Po-Ling Loh,et al.  Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..

[65]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[66]  Venkatesan Guruswami,et al.  Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes , 2012, SIAM J. Comput..

[67]  Christos Thrampoulidis,et al.  The squared-error of generalized LASSO: A precise analysis , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[68]  Mihailo Stojnic Upper-bounding ℓ1-optimization weak thresholds , 2013, ArXiv.

[69]  Lin Xiao,et al.  A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem , 2012, SIAM J. Optim..

[70]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[71]  Mihailo Stojnic,et al.  A framework to characterize performance of LASSO algorithms , 2013, ArXiv.

[72]  S. Foucart,et al.  Random Sampling in Bounded Orthonormal Systems , 2013 .

[73]  Mihailo Stojnic,et al.  A performance analysis framework for SOCP algorithms in noisy compressed sensing , 2013, ArXiv.

[74]  Emmanuel J. Candès,et al.  Simple bounds for recovering low-complexity models , 2011, Math. Program..

[75]  M. Stojnic Upper-bounding $\ell_1$-optimization weak thresholds , 2013 .

[76]  Andrea Montanari,et al.  Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to Minimax Denoising , 2011, IEEE Transactions on Information Theory.

[77]  Volkan Cevher,et al.  Fixed Points of Generalized Approximate Message Passing With Arbitrary Matrices , 2016, IEEE Transactions on Information Theory.

[78]  Joel A. Tropp,et al.  Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.

[79]  Christos Thrampoulidis,et al.  Simple Bounds for Noisy Linear Inverse Problems with Exact Side Information , 2013, ArXiv.

[80]  Tengyuan Liang,et al.  Geometric Inference for General High-Dimensional Linear Inverse Problems , 2014, 1404.4408.

[81]  Vidyashankar Sivakumar,et al.  Estimation with Norm Regularization , 2014, NIPS.

[82]  G. Lyon Al , 2014 .

[83]  Y. Plan,et al.  High-dimensional estimation with geometric constraints , 2014, 1404.3749.

[84]  Prateek Jain,et al.  On Iterative Hard Thresholding Methods for High-dimensional M-Estimation , 2014, NIPS.

[85]  Volkan Cevher,et al.  Time-Data Tradeoffs by Aggressive Smoothing , 2014, NIPS.

[86]  T. T. Cai,et al.  Geometrizing Local Rates of Convergence for Linear Inverse Problems , 2014 .

[87]  R. Vershynin Estimation in High Dimensions: A Geometric Perspective , 2014, 1405.5103.

[88]  Shahar Mendelson,et al.  Learning without Concentration , 2014, COLT.

[89]  Ya-Ping Hsieh,et al.  A Geometric View on Constrained M-Estimators , 2015, 1506.08163.

[90]  Volkan Cevher,et al.  Designing Statistical Estimators That Balance Sample Size, Risk, and Computational Cost , 2015, IEEE Journal of Selected Topics in Signal Processing.

[91]  Benjamin Recht,et al.  Isometric sketching of any set via the Restricted Isometry Property , 2015, ArXiv.

[92]  Joydeep Ghosh,et al.  Unified View of Matrix Completion under General Structural Constraints , 2015, NIPS.

[93]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[94]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[95]  Joel A. Tropp,et al.  Universality laws for randomized dimension reduction, with applications , 2015, ArXiv.

[96]  Richard G. Baraniuk,et al.  From Denoising to Compressed Sensing , 2014, IEEE Transactions on Information Theory.

[97]  Sjoerd Dirksen,et al.  Dimensionality Reduction with Subgaussian Matrices: A Unified Theory , 2014, Foundations of Computational Mathematics.

[98]  Yaniv Plan,et al.  The Generalized Lasso With Non-Linear Observations , 2015, IEEE Transactions on Information Theory.

[99]  Babak Hassibi,et al.  Asymptotically Exact Denoising in Relation to Compressed Sensing , 2013, ArXiv.

[100]  Arindam Banerjee,et al.  Structured Matrix Recovery via the Generalized Dantzig Selector , 2016, NIPS.

[101]  Samet Oymak,et al.  Fast and Reliable Parameter Estimation from Nonlinear Observations , 2016, SIAM J. Optim..

[102]  Arian Maleki,et al.  Does $\ell _{p}$ -Minimization Outperform $\ell _{1}$ -Minimization? , 2015, IEEE Transactions on Information Theory.

[103]  Maryam Fazel,et al.  Decomposable norm minimization with proximal-gradient homotopy algorithm , 2015, Comput. Optim. Appl..