Frame isotropic multiresolution analysis for micro CT scans of coronary arteries
暂无分享,去创建一个
Bernhard G. Bodmann | Dianna D. Cody | Manos Papadakis | Donald J. Kouri | S. David Gertz | Paul Cherukuri | Deborah Vela | Gregory W. Gladish | Ibrahim Abodashy | Jodie L. Conyers | James T. Willerson | S. Ward Casscells | D. Kouri | G. Gladish | D. Cody | B. Bodmann | J. Willerson | S. Casscells | M. Papadakis | S. Gertz | Deborah C Vela | Paul Cherukuri | Ibrahim Abodashy
[1] Deguang Han,et al. Frames, bases, and group representations , 2000 .
[2] Antoine Ayache. Construction de bases orthonormées d'ondelettes de L2(R2) non séparables, à support compact et de régularité arbitrairement grande , 1997 .
[3] Eero P. Simoncelli,et al. On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.
[4] I. Daubechies,et al. Non-separable bidimensional wavelets bases. , 1993 .
[5] E. Boerwinkle,et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. , 2003, Circulation.
[6] Josip Derado. Nonseparable, Compactly Supported Interpolating Refinable Functions with Arbitrary Smoothness☆ , 2001 .
[7] Antoine Ayache. Construction of non separable dyadic compactly supported orthonormal wavelet bases for L2(R2) of arbitrarily high regularity , 1999 .
[8] Peter G. Casazza,et al. Modern tools for weyl-heisenberg (gabor) frame theory , 2001 .
[9] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[10] Michel Barlaud,et al. Image coding using lattice vector quantization of wavelet coefficients , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[11] C. Heil,et al. Self-similarity and Multiwavelets in Higher Dimensions , 2004 .
[12] I. Selesnick. Smooth Wavelet Tight Frames with Zero Moments , 2001 .
[13] Antoine Ayache,et al. Some Methods for Constructing Nonseparable, Orthonormal, Compactly Supported Wavelet Bases , 2001 .
[14] Ming-Jun Lai,et al. Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets , 2000, IEEE Trans. Image Process..
[15] Martin Vetterli,et al. Nonseparable Multidimensional Perfect Reconstruction Filter Banks and , 1992 .
[16] Ioannis A. Kakadiaris,et al. Nonseparable Radial Frame Multiresolution Analysis in Multidimensions , 2003 .
[17] Ivan W. Selesnick,et al. Iterated oversampled filter banks and wavelet frames , 2000, SPIE Optics + Photonics.
[18] B. Bodmann,et al. An Inhomogeneous Uncertainty Principle for Digital Low-Pass Filters , 2006 .
[19] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[20] Manos Papadakis,et al. Generalized Frame Multiresolution Analysis of Abstract Hilbert Spaces , 2004 .
[21] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[22] Xiaoming Huo,et al. Beamlets and Multiscale Image Analysis , 2002 .
[23] Eero P. Simoncelli,et al. Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain , 2002 .
[24] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[25] Thierry Blu,et al. A new family of complex rotation-covariant multiresolution bases in 2D , 2003, SPIE Optics + Photonics.
[26] A. Aldroubi. Portraits of frames , 1995 .
[27] Ioannis A. Kakadiaris,et al. Nonseparable radial frame multiresolution analysis in multidimensions and isotropic fast wavelet algorithms , 2003, SPIE Optics + Photonics.
[28] N. Kingsbury. Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] Yang Wang,et al. Arbitrarily smooth orthogonal nonseparable wavelets in R 2 , 1999 .
[30] Ioannis A. Kakadiaris,et al. Image denoising using a tight frame , 2005, IEEE Transactions on Image Processing.
[31] B. Torrésani,et al. Wavelets: Mathematics and Applications , 1994 .
[32] A. Aldroubi,et al. Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(Rd) , 2004, math/0703438.
[33] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[34] Karlheinz Gröchenig,et al. Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.
[35] Antonio Colombo,et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. , 2003, Circulation.