Frame isotropic multiresolution analysis for micro CT scans of coronary arteries

We analyze localized textural consistencies in high-resolution Micro CT scans of coronary arteries to identify the appearance of diagnostically relevant changes in tissue. For the efficient and accurate processing of CT volume data, we use fast algorithms associated with three-dimensional so-called isotropic multiresolution wavelets that implement a redundant, frame-based image encoding without directional preference. Our algorithm identifies textural consistencies by correlating coefficients in the wavelet representation.

[1]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[2]  Antoine Ayache Construction de bases orthonormées d'ondelettes de L2(R2) non séparables, à support compact et de régularité arbitrairement grande , 1997 .

[3]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[4]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[5]  E. Boerwinkle,et al.  From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. , 2003, Circulation.

[6]  Josip Derado Nonseparable, Compactly Supported Interpolating Refinable Functions with Arbitrary Smoothness☆ , 2001 .

[7]  Antoine Ayache Construction of non separable dyadic compactly supported orthonormal wavelet bases for L2(R2) of arbitrarily high regularity , 1999 .

[8]  Peter G. Casazza,et al.  Modern tools for weyl-heisenberg (gabor) frame theory , 2001 .

[9]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Michel Barlaud,et al.  Image coding using lattice vector quantization of wavelet coefficients , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[11]  C. Heil,et al.  Self-similarity and Multiwavelets in Higher Dimensions , 2004 .

[12]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[13]  Antoine Ayache,et al.  Some Methods for Constructing Nonseparable, Orthonormal, Compactly Supported Wavelet Bases , 2001 .

[14]  Ming-Jun Lai,et al.  Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets , 2000, IEEE Trans. Image Process..

[15]  Martin Vetterli,et al.  Nonseparable Multidimensional Perfect Reconstruction Filter Banks and , 1992 .

[16]  Ioannis A. Kakadiaris,et al.  Nonseparable Radial Frame Multiresolution Analysis in Multidimensions , 2003 .

[17]  Ivan W. Selesnick,et al.  Iterated oversampled filter banks and wavelet frames , 2000, SPIE Optics + Photonics.

[18]  B. Bodmann,et al.  An Inhomogeneous Uncertainty Principle for Digital Low-Pass Filters , 2006 .

[19]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[20]  Manos Papadakis,et al.  Generalized Frame Multiresolution Analysis of Abstract Hilbert Spaces , 2004 .

[21]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[22]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[23]  Eero P. Simoncelli,et al.  Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain , 2002 .

[24]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[25]  Thierry Blu,et al.  A new family of complex rotation-covariant multiresolution bases in 2D , 2003, SPIE Optics + Photonics.

[26]  A. Aldroubi Portraits of frames , 1995 .

[27]  Ioannis A. Kakadiaris,et al.  Nonseparable radial frame multiresolution analysis in multidimensions and isotropic fast wavelet algorithms , 2003, SPIE Optics + Photonics.

[28]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Yang Wang,et al.  Arbitrarily smooth orthogonal nonseparable wavelets in R 2 , 1999 .

[30]  Ioannis A. Kakadiaris,et al.  Image denoising using a tight frame , 2005, IEEE Transactions on Image Processing.

[31]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[32]  A. Aldroubi,et al.  Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(Rd) , 2004, math/0703438.

[33]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[34]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[35]  Antonio Colombo,et al.  From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. , 2003, Circulation.