A Bayesian multivariate probit for ordinal data with semiparametric random-effects

A heterogeneous thresholds probit for ordered ratings is developed to remove conditional independence among responses and incorporate respondent traits. We propose a semiparametric approach to relaxing normality of random-effects in the probit model that account for differences in response style. Simulation studies provide evidence of the ability for the proposed semiparametric model to better recover an underlying distribution of respondent effects than the parametric one with a normal hierarchical prior. The application to ratings on the value of information sources for automobiles demonstrates significant correlations among responses and irregularity in the shape of unobserved heterogeneity.

[1]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[2]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[3]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[4]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[5]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[6]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[7]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[8]  G. Molenberghs,et al.  Type I and Type II Error Under Random‐Effects Misspecification in Generalized Linear Mixed Models , 2007, Biometrics.

[9]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[10]  E. Greenleaf Improving Rating Scale Measures by Detecting and Correcting Bias Components in Some Response Styles , 1992 .

[11]  Michael A. West,et al.  Hierarchical priors and mixture models, with applications in regression and density estimation , 2006 .

[12]  Forrest W. Young Quantitative analysis of qualitative data , 1981 .

[13]  Michael J. Daniels,et al.  A New Algorithm for Simulating a Correlation Matrix Based on Parameter Expansion and Reparameterization , 2006 .

[14]  Greg M. Allenby,et al.  Covariance Decompositions for Accurate Computation in Bayesian Scale-Usage Models , 2012 .

[15]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[16]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[17]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[18]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[19]  Peter E. Rossi,et al.  Overcoming Scale Usage Heterogeneity , 2001 .

[20]  Hans Baumgartner,et al.  Response Styles in Marketing Research: A Cross-National Investigation , 2001 .

[21]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[22]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[23]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[24]  Paul A. Ruud,et al.  Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results , 1996 .

[25]  P. Heagerty,et al.  Misspecified maximum likelihood estimates and generalised linear mixed models , 2001 .

[26]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[27]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[28]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[29]  Greg M. Allenby,et al.  Multivariate Analysis of Multiple Response Data , 2003 .

[30]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[31]  Keisuke Hirano,et al.  Semiparametric Bayesian Inference in Autoregressive Panel Data Models , 2002 .

[32]  Timothy R. Johnson,et al.  On the use of heterogeneous thresholds ordinal regression models to account for individual differences in response style , 2003 .

[33]  Irvine Clarke,et al.  Extreme response style in cross-cultural research: An empirical investigation. , 2000 .

[34]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[35]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[36]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[37]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[38]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[39]  P. Müller,et al.  Nonparametric Bayesian Modeling for Multivariate Ordinal Data , 2005 .

[40]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .