A Fuzzy System for Background Modeling in Video Sequences

Many applications in video processing require the background modeling as a first step to detect the moving objects in the scene. This paper presents an approach that calculates the updating weight of a recursive adaptive filter using a fuzzy logic system. Simulation results prove the advantages of the fuzzy approach versus conventional methods such as temporal filters.

[1]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Sridha Sridharan,et al.  Real-Time Adaptive Foreground/Background Segmentation , 2005, EURASIP J. Adv. Signal Process..

[3]  Thierry Bouwmans,et al.  Modeling of Dynamic Backgrounds by Type-2 Fuzzy Gaussians Mixture Models , 2010 .

[4]  Borko Furht,et al.  Neural Network Approach to Background Modeling for Video Object Segmentation , 2007, IEEE Transactions on Neural Networks.

[5]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[6]  Christopher M. Bishop,et al.  Non-linear Bayesian Image Modelling , 2000, ECCV.

[7]  Thierry Bouwmans,et al.  Background Subtraction for Visual Surveillance , 2012, Handbook of Soft Computing for Video Surveillance.

[8]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[9]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[10]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[12]  Fabio Roli,et al.  Image Analysis and Processing - ICIAP 2005, 13th International Conference, Cagliari, Italy, September 6-8, 2005, Proceedings , 2005, ICIAP.

[13]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[14]  Hamid Hassanpour,et al.  Video Frame's Background Modeling: Reviewing the Techniques , 2011, J. Signal Inf. Process..

[15]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[16]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[18]  M. Sigari,et al.  Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application , 2008 .

[19]  Piedad Brox Jiménez,et al.  Using Xfuzzy Environment for the Whole Design of Fuzzy Systems , 2007, 2007 IEEE International Fuzzy Systems Conference.

[20]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).