Meso-scale analysis of FRC using a two-step homogenization approach

This paper describes the development of a two-step homogenization approach for evaluating the elastic properties of fiber reinforced concrete (FRC). For that purpose, a finite element model of an FRC unit cell was generated. Prior to the generation of the unit cell finite element model, the interface transition zones (ITZ) and the aggregates were homogenized using an analytical approach. In the first step, the properties of a spherical aggregate and its concentric ITZ layer were homogenized via an analytical procedure. Then a numerical homogenization procedure was applied to the homogenized aggregate, the mortar, and the fibers to obtain the macroscopic properties of the FRC. The suggested framework executes the multi-scale analysis of FRC structures by incorporating an original concrete unit cell generator into a commercial finite element software package intended for simulating nonlinear solid mechanical problems. The results, obtained using the presented algorithm, are in very good agreement with experimental results.

[1]  M. A. Gutiérrez Energy release control for numerical simulations of failure in quasi‐brittle solids , 2004 .

[2]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[3]  Damijan Markovic,et al.  Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures , 2003 .

[4]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[5]  K. Tan,et al.  Instantaneous and Long-Term Deflections of Steel Fiber Reinforced Concrete Beams , 1994 .

[6]  Edward J. Garboczi,et al.  A hybrid finite element-analytical method for determining the intrinsic elastic moduli of particles having moderately extended shapes and a wide range of elastic properties , 2006 .

[7]  J. Maso Interfaces in Cementitious Composites , 1993 .

[8]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[9]  Gabriele Milani,et al.  A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded , 2010 .

[10]  Damijan Markovic,et al.  On micro–macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials , 2004 .

[11]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[12]  G. Meschke,et al.  Energy-based modeling of cohesive and cohesionless cracks via X-FEM , 2007 .

[13]  J. Aboudi,et al.  Higher-order theory for periodic multiphase materials with inelastic phases , 2003 .

[14]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[15]  Chris J. Pearce,et al.  Scale transition and enforcement of RVE boundary conditions in second‐order computational homogenization , 2008 .

[16]  P. Wriggers,et al.  Mesoscale models for concrete: homogenisation and damage behaviour , 2006 .

[17]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[18]  Jacob Fish,et al.  Multiscale damage modelling for composite materials: theory and computational framework , 2001 .

[19]  Gilles Chanvillard,et al.  Modelling Elasticity of a Hydrating Cement Paste , 2007 .

[20]  P. Wriggers,et al.  Numerical homogenization of hardened cement paste , 2008 .

[21]  Zdenek P. Bazant,et al.  Identification of Viscoelastic C-S-H Behavior in Mature Cement Paste by FFT-based Homogenization Method , 2010 .

[22]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[23]  Roman Lackner,et al.  3.10 – Computational Modeling of Concrete Structures , 2003 .

[24]  K. Willam,et al.  A multiscale model for modulus of elasticity of concrete at high temperatures , 2009 .

[25]  Kohei Yuge,et al.  Two-scale finite element analysis of heterogeneous solids with periodic microstructures , 2004 .

[26]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[27]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[28]  J. Bullard,et al.  A Model Investigation of the Influence of Particle Shape on Portland Cement Hydration , 2006 .

[29]  G. Prokopski,et al.  Interfacial transition zone in cementitious materials , 2000 .

[30]  James G. Berryman,et al.  Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations , 2001 .

[31]  L. J. Sluys,et al.  Coupled-volume multi-scale modelling of quasi-brittle material , 2008 .

[32]  Mgd Marc Geers,et al.  On coupled gradient-dependent plasticity and damage theories with a view to localization analysis , 1999 .

[33]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[34]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[35]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[36]  J. Aboudi Micromechanical analysis of the finite elastic–viscoplastic response of multiphase composites , 2003 .

[37]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[38]  H. Jennings,et al.  Does C–S–H particle shape matter? A discussion of the paper ‘Modelling elasticity of a hydrating cement paste’, by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427–1439 , 2008 .

[39]  V. Kouznetsova,et al.  Size of a representative volume element in a second-order computational homogenization framework , 2004 .

[40]  Jesper L. Asferg,et al.  A consistent partly cracked XFEM element for cohesive crack growth , 2007 .

[41]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  Matthew J. DeJong,et al.  The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C) , 2007 .

[43]  F. Ulm,et al.  Elements of chemomechanics of calcium leaching of cement-based materials at different scales , 2003 .

[44]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[45]  Karen L. Scrivener,et al.  Microstructural Gradients in Cement Paste Around Aggregate Particles , 1987 .

[46]  G B Batson,et al.  Mechanics of Crack Arrest in Concrete , 1963 .

[47]  A. F. Stock,et al.  THE EFFECT OF AGGREGATE CONCENTRATION UPON THE STRENGTH AND MODULUS OF ELASTICITY OF CONCRETE , 1979 .

[48]  René de Borst,et al.  Some recent issues in computational failure mechanics , 2001 .

[49]  Edward J. Garboczi,et al.  Multi-Scale Microstructural Modeling of Concrete Diffusivity: Identification of Significant Varibles , 1998 .

[50]  L. Sluys,et al.  Influence of Particle Packing on Elastic Properties of Concrete , 2012 .

[51]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[52]  Zhihui Sun,et al.  Modeling the elastic properties of concrete composites: Experiment, differential effective medium theory, and numerical simulation , 2007 .

[53]  Dimitris C. Lagoudas,et al.  EFFECTIVE ELASTIC PROPERTIES OF FIBER-REINFORCED CONCRETE WITH RANDOM FIBERS , 1991 .

[54]  T. H. Wee,et al.  STRESS-STRAIN RELATIONSHIP OF HIGH-STRENGTH FIBER CONCRETE IN COMPRESSION , 1999 .

[55]  Vít S˘milauer,et al.  Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste , 2006 .

[56]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[57]  H. Jennings,et al.  Does microstructure matter for statistical nanoindentation techniques , 2010 .

[58]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[59]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[60]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[61]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[62]  Carsten Könke,et al.  Mesoscale modeling of concrete: Geometry and numerics , 2006 .

[63]  Erez Gal,et al.  Development of a Concrete Unit Cell , 2008 .

[64]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[65]  Harm Askes,et al.  Quantification of stochastically stable representative volumes for random heterogeneous materials , 2006 .

[66]  Peter Wriggers,et al.  Computational micro-macro material testing , 2001 .

[67]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[68]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[69]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[70]  Paulo J.M. Monteiro,et al.  Concrete: A three phase material , 1993 .

[71]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[72]  Jeffrey W. Bullard,et al.  Shape analysis of a reference cement , 2004 .

[73]  Gilbert R. Williamson,et al.  The Effect of Steel Fibers on the Compressive Strength of Concrete , 1974 .

[74]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[75]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[76]  Z. M. Wang,et al.  Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh , 1999 .

[77]  Samir A. Ashour,et al.  Effect of the concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibrous concrete beams , 2000 .

[78]  D. J. Hannant,et al.  Discussion: The effect of aggregate concentration upon the strength and modulus of elasticity of concrete* , 1980 .

[79]  K. Scrivener,et al.  The percolation of pore space in the cement paste/aggregate interfacial zone of concrete , 1996 .

[80]  J. Aboudi Mechanics of composite materials - A unified micromechanical approach , 1991 .

[81]  B. Vijaya Rangan,et al.  Fiber Reinforced Concrete Properties , 1971 .

[82]  A. Samer Ezeldin,et al.  Normal‐ and High‐Strength Fiber‐Reinforced Concrete under Compression , 1992 .

[83]  Mgd Marc Geers,et al.  Gradient-enhanced computational homogenization for the micro-macro scale transition , 2001 .

[84]  Gianluca Cusatis,et al.  Two-scale Study of Concrete Fracturing Behavior , 2007 .

[85]  Edward J. Garboczi,et al.  Experimental and simulation studies of the interfacial zone in concrete , 1992 .

[86]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[87]  Vít Šmilauer,et al.  Multiscale Model for Temperature Distribution in Hydrating Concretee , 2009 .

[88]  J. C. Nadeau,et al.  A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids , 2003 .

[89]  C. Hellmich,et al.  A combined fracture‐micromechanics model for tensile strain‐softening in brittle materials, based on propagation of interacting microcracks , 2007 .

[90]  J. Sejnoha,et al.  Mesoscopic study on historic masonry , 2008 .

[91]  V Varvara Kouznetsova,et al.  Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .

[92]  E. Garboczi,et al.  New Effective Medium Theory for the Diffusivity or Conductivity of a Multi-Scale Concrete Microstructure Model | NIST , 2000 .

[93]  Roman Lackner,et al.  Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis , 2008 .

[94]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[95]  Jacob Fish,et al.  Finite deformation plasticity for composite structures: Computational models and adaptive strategies , 1999 .

[96]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[97]  Shuaib H. Ahmad,et al.  Effect of transition zone on the elastic behavior of cement-based composites , 1995 .

[98]  Kenjiro Terada,et al.  Nonlinear homogenization method for practical applications , 1995 .

[99]  Tso-Liang Teng,et al.  Calculating the elastic moduli of steel-fiber reinforced concrete using a dedicated empirical formula , 2004 .

[100]  F. Cluni,et al.  Homogenization of non-periodic masonry structures , 2004 .

[101]  Gordon B. Batson,et al.  Steel fiber reinforced concrete , 1976 .

[102]  A. Simone,et al.  The use of displacement discontinuities in a rate-dependent medium , 2004 .

[103]  Surendra P. Shah,et al.  Modeling the linear elastic properties of Portland cement paste , 2005 .