Yeast RNA Polymerase II at 5 Å Resolution

[1]  R. Kornberg,et al.  Mediator of transcriptional regulation. , 2000, Annual review of biochemistry.

[2]  G. Jensen,et al.  Electron Crystal Structure of an RNA Polymerase II Transcription Elongation Complex , 1999, Cell.

[3]  R. G. Keene,et al.  Initially Transcribed Sequences Strongly Affect the Extent of Abortive Initiation by RNA Polymerase II* , 1999, The Journal of Biological Chemistry.

[4]  M. Sawaya,et al.  An open and closed case for all polymerases. , 1999, Structure.

[5]  M. Kashlev,et al.  Functional topography of nascent RNA in elongation intermediates of RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ali Shilatifard,et al.  Factors regulating the transcriptional elongation activity of RNA polymerase II , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  E. Nudler,et al.  Spatial organization of transcription elongation complex in Escherichia coli. , 1998, Science.

[8]  M. Kashlev,et al.  Crucial role of the RNA:DNA hybrid in the processivity of transcription. , 1998, Molecules and Cells.

[9]  K Cowtan,et al.  Miscellaneous algorithms for density modification. , 1998, Acta crystallographica. Section D, Biological crystallography.

[10]  Joachim Frank,et al.  A 9 Å Resolution X-Ray Crystallographic Map of the Large Ribosomal Subunit , 1998, Cell.

[11]  R. G. Keene,et al.  Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. , 1998, Molecular cell.

[12]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[13]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[14]  F. Holstege,et al.  Three transitions in the RNA polymerase II transcription complex during initiation , 1997, The EMBO journal.

[15]  P. Hanawalt,et al.  Nucleotide Sequence Context Effect of a Cyclobutane Pyrimidine Dimer upon RNA Polymerase II Transcription* , 1997, The Journal of Biological Chemistry.

[16]  R. Kornberg,et al.  Two conformations of RNA polymerase II revealed by electron crystallography. , 1997, Journal of molecular biology.

[17]  Robert Huber,et al.  Ta6Br122+, a tool for phase determination of large biological assemblies by X-ray crystallography , 1997 .

[18]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[19]  U. Arndt An Introduction to X-Ray Crystallography , 1997 .

[20]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[21]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[22]  W Furey,et al.  PHASES-95: a program package for processing and analyzing diffraction data from macromolecules. , 1997, Methods in enzymology.

[23]  D. K. Hawley,et al.  Promoter Proximal Sequences Modulate RNA Polymerase II Elongation by a Novel Mechanism , 1996, Cell.

[24]  R. Conaway,et al.  The RNA polymerase II general elongation factors. , 1996, Trends in biochemical sciences.

[25]  Thomas A. Steitz,et al.  Structure of Taq polymerase with DNA at the polymerase active site , 1996, Nature.

[26]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[27]  W. Gu,et al.  Increased accommodation of nascent RNA in a product site on RNA polymerase II during arrest. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Bushnell,et al.  Two-Dimensional Crystallography of TFIIB– and IIE–RNA Polymerase II Complexes: Implications for Start Site Selection and Initiation Complex Formation , 1996, Cell.

[29]  S Weinstein,et al.  The suitability of multi-metal clusters for phasing in crystallography of large macromolecular assemblies. , 1996, Structure.

[30]  W. Gu,et al.  Variation in the Size of Nascent RNA Cleavage Products as a Function of Transcript Length and Elongation Competence (*) , 1995, The Journal of Biological Chemistry.

[31]  S. Darst,et al.  Three-dimensional structure of E. coil core RNA polymerase: Promoter binding and elongation conformations of the enzyme , 1995, Cell.

[32]  D. Luse,et al.  RNA Polymerase II Ternary Complexes May Become Arrested after Transcribing to within 10 Bases of the End of Linear Templates (*) , 1995, The Journal of Biological Chemistry.

[33]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[34]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[35]  R. Kornberg,et al.  Epitaxial growth of protein crystals on lipid layers , 1994, Nature Structural Biology.

[36]  B. Peterlin,et al.  Control of RNA initiation and elongation at the HIV-1 promoter. , 1994, Annual review of biochemistry.

[37]  D. McRee Practical Protein Crystallography , 1993 .

[38]  R. Young,et al.  RPB7, one of two dissociable subunits of yeast RNA polymerase II, is essential for cell viability , 1993, Yeast.

[39]  Caroline M. Kane,et al.  Contacts between mammalian RNA polymerase II and the template DNA in a ternary elongation complex , 1993, Nucleic Acids Res..

[40]  R. Landick,et al.  Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. , 1992, Journal of molecular biology.

[41]  T. Steitz,et al.  Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases. , 1992, Acta crystallographica. Section A, Foundations of crystallography.

[42]  J. Roberts,et al.  Structure of transcription elongation complexes in vivo. , 1992, Science.

[43]  M. Chamberlin,et al.  Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Seth A. Darst,et al.  Three-dimensional structure of yeast RNA polymerase II at 16 Å resolution , 1991, Cell.

[45]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[46]  R. Young,et al.  Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. , 1991, The Journal of biological chemistry.

[47]  R. Landick,et al.  Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. , 1990, The Journal of biological chemistry.

[48]  N. Thompson,et al.  Purification and lipid-layer crystallization of yeast RNA polymerase II. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Young,et al.  RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth , 1989, Molecular and cellular biology.

[50]  M. Chamberlin,et al.  Terminator-distal sequences determine the in vitro efficiency of the early terminators of bacteriophages T3 and T7. , 1989, Biochemistry.

[51]  S. Takeuchi,et al.  A reciprocal-space method for calculating a molecular envelope using the algorithm of B. C. Wang. , 1987 .

[52]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[53]  M. L. Bouquard The clinch river project. , 1982, Science.

[54]  H. d'Amour Vergleich der heteropolyanionen [PMo9O31(H2O)3]3−, [P2Mo18O62]6− und [P2W18O62]6− , 1976 .

[55]  J. Krakow,et al.  Studies on the product binding sites of the Azotobacter vinelandii ribonucleic acid polymerase. , 1975, The Journal of biological chemistry.

[56]  Michael M Woolfson,et al.  An introduction to X-ray crystallography , 1970 .

[57]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .

[58]  Michael G. Rossmann,et al.  The position of anomalous scatterers in protein crystals , 1961 .

[59]  M. Rossmann The accurate determination of the position and shape of heavy‐atom replacement groups in proteins , 1960 .

[60]  F. Crick,et al.  The theory of the method of isomorphous replacement for protein crystals. I , 1956 .