On the scattering and absorption properties of cirrus cloud

Abstract Cirrus (ice crystal) clouds are predominantly composed of non-spherical ice crystals of varying shapes and sizes and as a consequence have an important impact on the earth–atmosphere radiation balance. Any changes to their microphysical characteristics will have a substantial feedback on climate change; hence it is vital to accurately represent cirrus cloud and their single-scattering properties in climate models and in remote sensing applications. In this paper the current understanding of the single-scattering properties of cirrus cloud at solar and thermal wavelengths is reviewed.

[1]  Kuo-Nan Liou,et al.  Light Scattering by Hexagonal Ice Crystals , 1981 .

[2]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[3]  A. Ashkin,et al.  Observation of optical resonances of dielectric spheres by light scattering. , 1981, Applied optics.

[4]  P. Francis,et al.  Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape , 1999 .

[5]  J. Mitchell,et al.  C02 and climate: a missing feedback? , 1989, Nature.

[6]  K. Liou,et al.  Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .

[7]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[8]  P. Kaye,et al.  Scattering of light from atmospheric ice analogues , 2003 .

[9]  Andrew J. Heymsfield,et al.  Aggregation and Scaling of Ice Crystal Size Distributions , 2003 .

[10]  Q. Fu,et al.  Anomalous diffraction theory for randomly oriented nonspherical particles: a comparison between original and simplified solutions , 2001 .

[11]  P. Francis,et al.  A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi‐angle multi‐wavelength radiance measurements of cirrus , 2001 .

[12]  P. Francis Some Aircraft Observations of the Scattering Properties of Ice Crystals , 1995 .

[13]  Bryan A. Baum,et al.  Single scattering properties of droxtals , 2003 .

[14]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[15]  Andrew A. Lacis,et al.  Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape , 1996 .

[16]  James F. Scott,et al.  Scattering of Light by Crystals , 1998 .

[17]  A. Heymsfield,et al.  Small ice crystals in cirrus clouds : A model study and comparison with in situ observations , 1998 .

[18]  M. Poellot,et al.  A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds , 2001 .

[19]  William L. Smith,et al.  Cirrus Cloud Properties Derived from High Spectral Resolution Infrared Spectrometry during FIRE II. Part III: Ground-Based HIS Results , 1995 .

[20]  Greg Michael McFarquhar,et al.  Use of observed ice crystal sizes and shapes to calculate mean‐scattering properties and multispectral radiances: CEPEX April 4, 1993, case study , 1999 .

[21]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[22]  U. Schumann,et al.  Quantitative measurement of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals , 2002 .

[23]  Richard Bantges,et al.  Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared , 1999 .

[24]  Timothy J. Garrett,et al.  Small, highly reflective ice crystals in low‐latitude cirrus , 2003 .

[25]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[26]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[27]  J J Stamnes,et al.  Application of the extended boundary condition method to particles with sharp edges: a comparison of two surface integration approaches. , 2001, Applied optics.

[28]  M. Mishchenko,et al.  Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter , 2001 .

[29]  Q. Fu,et al.  Light scattering by Gaussian particles: a solution with finite-difference time-domain technique , 2003 .

[30]  Steven A. Ackerman,et al.  The 27–28 October 1986 FIRE IFO Cirrus Case Study: Spectral Properties of Cirrus Clouds in the 8–12 μm Window , 1990 .

[31]  D. Winker,et al.  Manifestations of interference fluctuations of phase functions and backscattering cross sections for ice crystals with specific orientations , 2003 .

[32]  Philip D. Watts Potential uses of along-track scanning radiometer data for cloud parameter retrieval , 1995, Remote Sensing.

[33]  G. McFarquhar,et al.  A New Parameterization of Single Scattering Solar Radiative Properties for Tropical Anvils Using Observed Ice Crystal Size and Shape Distributions , 2002 .

[34]  S. Asano,et al.  Light scattering by randomly oriented spheroidal particles. , 1980, Applied optics.

[35]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[36]  Stephan Havemann,et al.  Photon tunneling contributions to extinction for laboratory grown hexagonal columns , 2001 .

[37]  D. Mitchell,et al.  Ice-crystal absorption: a comparison between theory and implications for remote sensing. , 1998, Applied optics.

[38]  F. Bryant,et al.  Optical efficiencies of large particles of arbitrary shape and orientation , 1969 .

[39]  P. Watts,et al.  Testing the coherence of cirrus microphysical and bulk properties retrieved from dual‐viewing multispectral satellite radiance measurements , 1999 .

[40]  J. Foot,et al.  Some observations of the optical properties of clouds. II: Cirrus , 1988 .

[41]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[42]  Scattering from long prisms : a comparison between ray tracing combined with diffraction on facets and SVM , 2003 .

[43]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[44]  Andreas Macke,et al.  Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing , 1999 .

[45]  D. Mackowski,et al.  Discrete dipole moment method for calculation of the T matrix for nonspherical particles. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  Andrew J. Heymsfield,et al.  Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles , 2003 .

[47]  M. Herman,et al.  Cloud detection and derivation of cloud properties from POLDER , 1997 .

[48]  Shepard A. Clough,et al.  Near micron‐sized cirrus cloud particles in high‐resolution infrared spectra: An orographic case study , 2003 .

[49]  David L. Mitchell,et al.  Modeling cirrus clouds. Part II: Treatment of radiative properties , 1996 .

[50]  Marie Doutriaux-Boucher,et al.  Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in‐situ and ADEOS‐POLDER measurements , 2000 .

[51]  S. Oshchepkov,et al.  In situ measurements of the scattering phase function of stratocumulus, contrails and cirrus , 1998 .

[52]  P. Watts,et al.  Potential retrieval of dominating crystal habit and size using radiance data from a dual‐view and multiwavelength instrument: A tropical cirrus anvil case , 1998 .

[53]  H. Gerber,et al.  Nephelometer Measurements of the Asymmetry Parameter, Volume Extinction Coefficient, and Backscatter Ratio in Arctic Clouds , 2000 .

[54]  Peter N. Francis,et al.  On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high‐resolution airborne radiance measurements , 2004 .

[55]  K. Liou,et al.  Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .

[56]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[57]  P. Wendling,et al.  Scattering of solar radiation by hexagonal ice crystals. , 1979, Applied optics.

[58]  J. Edwards,et al.  A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmosphere , 1999 .

[59]  K. Liou,et al.  Light scattering by nonspherical particles: remote sensing and climatic implications , 1994 .

[60]  A. Macke,et al.  Single Scattering Properties of Atmospheric Ice Crystals , 1996 .

[61]  Peter N. Francis,et al.  A consistent set of single-scattering properties for cirrus cloud: tests using radiance measurements from a dual-viewing multi-wavelength satellite-based instrument , 2003 .

[62]  Greg Michael McFarquhar,et al.  Light Scattering by Quasi-Spherical Ice Crystals , 2004 .

[63]  B. Soden,et al.  Large-scale ice clouds in the GFDL SKYHI general circulation model , 1997 .

[64]  Qiang Fu,et al.  Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths. , 1999 .

[65]  T Rother,et al.  Light scattering on hexagonal ice columns. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[66]  Jean-Claude Buriez,et al.  First results of the POLDER "Earth Radiation Budget and Clouds" operational algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[67]  David L. Mitchell,et al.  Impact of a new scheme for optical properties of ice crystals on climates of two GCMs , 2000 .

[68]  K. Muinonen,et al.  Scattering of light by crystals: a modified Kirchhoff approximation. , 1989, Applied optics.

[69]  Peter N. Francis,et al.  A Process Study of the Dependence of Ice Crystal Absorption on Particle Geometry: Application to Aircraft Radiometric Measurements of Cirrus Cloud in the Terrestrial Window Region , 2003 .

[70]  Yoshihide Takano,et al.  Radiative Transfer in Cirrus Clouds. Part III: Light Scattering by Irregular Ice Crystals , 1995 .

[71]  J. Edwards,et al.  Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods , 2003 .

[72]  K. Liou,et al.  Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models , 1995 .

[73]  Greg Michael McFarquhar,et al.  Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment , 1996 .

[74]  Bryan A. Baum,et al.  The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data , 2002 .

[75]  Michael D. King,et al.  Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: Methodology and sensitivity to physical assumptions , 2000 .

[76]  M. Ringer,et al.  Simulation of satellite channel radiances in the Met Office Unified Model , 2003 .

[77]  Z. Ulanowski,et al.  Scattering from long prisms computed using ray tracing combined with diffraction on facets , 2003 .

[78]  P. Yang,et al.  Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods. , 2001, Applied optics.

[79]  Stephen L. Durden,et al.  Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns , 2002 .

[80]  M. Mishchenko,et al.  The influence of inclusions on light scattering by large ice particles , 1996 .

[81]  M. Mishchenko,et al.  Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols. , 2000, Applied optics.

[82]  A. Baran,et al.  Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders. , 2003, Applied optics.

[83]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[84]  Y. Mano Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method. , 2000, Applied optics.

[85]  Bryan A. Baum,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .

[86]  Larry D. Travis,et al.  Light Scattering by Nonspherical Particles , 1998 .

[87]  R. Koelemeijer,et al.  Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals , 1999 .

[88]  J. Margolis,et al.  Use of high-resolution measurements for the retrieval of temperature and gas-concentration profiles from outgoing infrared spectra in the presence of cirrus clouds. , 2003, Applied optics.

[89]  P. Field,et al.  Theory of growth by differential sedimentation, with application to snowflake formation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  W. Paul Menzel,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase , 2000 .

[91]  Veerabhadran Ramanathan,et al.  The role of earth radiation budget studies in climate and general , 1987 .

[92]  Brad Baker,et al.  An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE , 2001 .

[93]  A. Korolev,et al.  Ice particle habits in stratiform clouds , 2000 .

[94]  Yoshihide Takano,et al.  Light Scattering and Radiative Transfer in Ice Crystal Clouds , 2000 .