A mortar approach for Fluid–Structure interaction problems: Immersed strategies for deformable and rigid bodies

Abstract This paper proposes a new Fluid–Structure Interaction immersed computational framework. The coupling between an underlying incompressible fluid and an embedded solid is formulated by means of the overlapping domain decomposition method in conjunction with a mortar approach, leading to a variationally consistent scheme which is capable of unifying a range of methodologies currently available in the literature. This novel framework provides great flexibility and enables the modelling of immersed deformable solids (compressible and incompressible) as well as rigid bodies through the use of a weak director based formulation. A novel Null-Space reduction scheme is employed in order to enhance the conditioning of the resulting system of equations and reduce the computational cost. An implicit structure preserving time integration algorithm is used to yield extra stability and robustness and the use of a segmentation technique near the boundary between fluid and solid also leads to enhanced accuracy. The methodology is benchmarked against results obtained by using alternative boundary fitted methodologies.

[1]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[2]  Damian J. J. Farnell,et al.  Numerical Simulations of a Filament In a Flowing Soap Film , 2004 .

[3]  Peter Betsch,et al.  Conservation properties of a time FE method—part II: Time‐stepping schemes for non‐linear elastodynamics , 2001 .

[4]  Peter Betsch,et al.  A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .

[5]  Peter Betsch,et al.  Transient three‐dimensional domain decomposition problems: Frame‐indifferent mortar constraints and conserving integration , 2010 .

[6]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[7]  Peter Betsch,et al.  Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration , 2011 .

[8]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[9]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[10]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[11]  Wing Kam Liu,et al.  Mathematical foundations of the immersed finite element method , 2006 .

[12]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[13]  Barbara I. Wohlmuth,et al.  A Multigrid Method Based on the Unconstrained Product Space for Mortar Finite Element Discretizations , 2001, SIAM J. Numer. Anal..

[14]  Tod A. Laursen,et al.  Two dimensional mortar contact methods for large deformation frictional sliding , 2005 .

[15]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[16]  Oubay Hassan,et al.  Partitioned block-Gauss-Seidel coupling for dynamic fluid-structure interaction , 2010 .

[17]  T. Laursen,et al.  A mortar‐finite element formulation for frictional contact problems , 2000 .

[18]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[19]  Wing Kam Liu,et al.  Immersed finite element method for rigid body motions in the incompressible Navier–Stokes flow , 2008 .

[20]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[21]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[22]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[23]  Antonio J. Gil,et al.  The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..

[24]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[25]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[26]  Clark R. Dohrmann,et al.  Methods for connecting dissimilar three-dimensional finite element meshes , 2000 .

[27]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[28]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[29]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[30]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[31]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[32]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[33]  Neelesh A. Patankar,et al.  Erratum to "Immersed finite element method and its applications to biological systems" [Comput. Methods Appl. Mech. Engrg. 195 (2006) 1722-1749] (DOI:10.1016/j.cma.2005.05.049) , 2006 .

[34]  Tod A. Laursen,et al.  A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations , 2007 .

[35]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[36]  Antonio J. Gil,et al.  An enhanced Immersed Structural Potential Method for fluid-structure interaction , 2013, J. Comput. Phys..

[37]  Oubay Hassan,et al.  A partitioned coupling approach for dynamic fluid–structure interaction with applications to biological membranes , 2008 .

[38]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[39]  Barbara Wohlmuth,et al.  An overlapping domain decomposition method for the simulation of elastoplastic incremental forming processes , 2009 .

[40]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[41]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[42]  Peter Betsch,et al.  The discrete null space method for the energy consistent integration of constrained mechanical systems: Part I: Holonomic constraints , 2005 .

[43]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[44]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[45]  P. Betsch,et al.  Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .

[46]  J. Z. Zhu,et al.  The finite element method , 1977 .

[47]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[48]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[49]  Peter Betsch,et al.  An augmentation technique for large deformation frictional contact problems , 2013 .

[50]  Peter Betsch,et al.  Energy-momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems , 2011 .

[51]  Wolfgang A. Wall,et al.  Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .

[52]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[53]  Spencer J. Sherwin,et al.  A numerical study of rotational and transverse galloping rectangular bodies , 2003 .

[54]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[55]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[56]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[57]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .