A mortar approach for Fluid–Structure interaction problems: Immersed strategies for deformable and rigid bodies
暂无分享,去创建一个
Peter Betsch | Antonio J. Gil | Christian Hesch | Javier Bonet | A. Arranz Carreño | A. J. Gil | J. Bonet | P. Betsch | C. Hesch | A. A. Carreño
[1] R. Glowinski,et al. A fictitious domain method for Dirichlet problem and applications , 1994 .
[2] Damian J. J. Farnell,et al. Numerical Simulations of a Filament In a Flowing Soap Film , 2004 .
[3] Peter Betsch,et al. Conservation properties of a time FE method—part II: Time‐stepping schemes for non‐linear elastodynamics , 2001 .
[4] Peter Betsch,et al. A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .
[5] Peter Betsch,et al. Transient three‐dimensional domain decomposition problems: Frame‐indifferent mortar constraints and conserving integration , 2010 .
[6] Antonio J. Gil,et al. On continuum immersed strategies for Fluid-Structure Interaction , 2012 .
[7] Peter Betsch,et al. Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration , 2011 .
[8] Lucy T. Zhang,et al. Immersed finite element method , 2004 .
[9] M. Rubin. Cosserat Theories: Shells, Rods and Points , 2000 .
[10] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[11] Wing Kam Liu,et al. Mathematical foundations of the immersed finite element method , 2006 .
[12] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[13] Barbara I. Wohlmuth,et al. A Multigrid Method Based on the Unconstrained Product Space for Mortar Finite Element Discretizations , 2001, SIAM J. Numer. Anal..
[14] Tod A. Laursen,et al. Two dimensional mortar contact methods for large deformation frictional sliding , 2005 .
[15] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .
[16] Oubay Hassan,et al. Partitioned block-Gauss-Seidel coupling for dynamic fluid-structure interaction , 2010 .
[17] T. Laursen,et al. A mortar‐finite element formulation for frictional contact problems , 2000 .
[18] O. Gonzalez. Time integration and discrete Hamiltonian systems , 1996 .
[19] Wing Kam Liu,et al. Immersed finite element method for rigid body motions in the incompressible Navier–Stokes flow , 2008 .
[20] David Farrell,et al. Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.
[21] Thomas J. R. Hughes,et al. The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .
[22] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[23] Antonio J. Gil,et al. The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..
[24] C. Peskin. Flow patterns around heart valves: A numerical method , 1972 .
[25] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[26] Clark R. Dohrmann,et al. Methods for connecting dissimilar three-dimensional finite element meshes , 2000 .
[27] R. Glowinski,et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .
[28] Hong Zhao,et al. A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..
[29] C. Peskin,et al. A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .
[30] Zhaosheng Yu. A DLM/FD method for fluid/flexible-body interactions , 2005 .
[31] Tayfun E. Tezduyar,et al. Finite element stabilization parameters computed from element matrices and vectors , 2000 .
[32] W. Wall,et al. An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .
[33] Neelesh A. Patankar,et al. Erratum to "Immersed finite element method and its applications to biological systems" [Comput. Methods Appl. Mech. Engrg. 195 (2006) 1722-1749] (DOI:10.1016/j.cma.2005.05.049) , 2006 .
[34] Tod A. Laursen,et al. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations , 2007 .
[35] Wolfgang A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .
[36] Antonio J. Gil,et al. An enhanced Immersed Structural Potential Method for fluid-structure interaction , 2013, J. Comput. Phys..
[37] Oubay Hassan,et al. A partitioned coupling approach for dynamic fluid–structure interaction with applications to biological membranes , 2008 .
[38] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[39] Barbara Wohlmuth,et al. An overlapping domain decomposition method for the simulation of elastoplastic incremental forming processes , 2009 .
[40] D. Peric,et al. A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .
[41] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[42] Peter Betsch,et al. The discrete null space method for the energy consistent integration of constrained mechanical systems: Part I: Holonomic constraints , 2005 .
[43] Oscar Gonzalez,et al. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .
[44] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[45] P. Betsch,et al. Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .
[46] J. Z. Zhu,et al. The finite element method , 1977 .
[47] Wing Kam Liu,et al. Extended immersed boundary method using FEM and RKPM , 2004 .
[48] Peter Betsch,et al. Isogeometric analysis and domain decomposition methods , 2012 .
[49] Peter Betsch,et al. An augmentation technique for large deformation frictional contact problems , 2013 .
[50] Peter Betsch,et al. Energy-momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems , 2011 .
[51] Wolfgang A. Wall,et al. Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .
[52] F. Baaijens. A fictitious domain/mortar element method for fluid-structure interaction , 2001 .
[53] Spencer J. Sherwin,et al. A numerical study of rotational and transverse galloping rectangular bodies , 2003 .
[54] Barbara Wohlmuth,et al. A primal–dual active set strategy for non-linear multibody contact problems , 2005 .
[55] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[56] J. Happel,et al. Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .
[57] Tayfun E. Tezduyar,et al. Finite element methods for flow problems with moving boundaries and interfaces , 2001 .