Global ocean carbon uptake: magnitude, variability and trends

The globally integrated sea–air anthropogenic carbon dioxide (CO 2 ) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP) project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs). The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO 2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr −1 . The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr −1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr −1 ) decade −1 to −0.50 (Pg C yr −1 ) decade −1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO 2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO 2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.

[1]  C. Sweeney,et al.  The observed evolution of oceanic pCO2 and its drivers over the last two decades , 2012 .

[2]  Taro Takahashi,et al.  Global autocorrelation scales of the partial pressure of oceanic CO2 , 2005 .

[3]  P. Patra,et al.  Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of the global CO2 budget for the period 2000–2010 , 2012 .

[4]  C. Sabine,et al.  Estimation of Anthropogenic CO 2 Inventories in the Ocean , 2009 .

[5]  A. Olsen,et al.  Reconstructing the time history of the air‐sea CO2 disequilibrium and its rate of change in the eastern subpolar North Atlantic, 1972–1989 , 2006 .

[6]  B. Delille,et al.  Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts , 2005 .

[7]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[8]  Andrew J. Watson,et al.  Tracking the Variable North Atlantic Sink for Atmospheric CO2 , 2009, Science.

[9]  Y. Niwa,et al.  Air-sea CO2 flux in the Pacific Ocean for the period 1990-2009 , 2013 .

[10]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[11]  W. McGillis,et al.  Parameterization and Micrometeorological Measurement of Air–Sea Gas Transfer , 2000, Boundary-Layer Meteorology.

[12]  Scott C. Doney,et al.  Evaluating global ocean carbon models: The importance of realistic physics , 2004 .

[13]  D. Jackson,et al.  A comparison of satellite‐derived carbon dioxide transfer velocities from a physically based model with GasEx cruise observations , 2012 .

[14]  C. Sweeney,et al.  Advances in quantifying air-sea gas exchange and environmental forcing. , 2009, Annual review of marine science.

[15]  I. Young,et al.  Global Trends in Wind Speed and Wave Height , 2011, Science.

[16]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[17]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[18]  Taro Takahashi,et al.  Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales , 2011 .

[19]  M. Ramonet,et al.  Recent acceleration of the sea surface fCO2 growth rate in the North Atlantic subpolar gyre (1993–2008) revealed by winter observations , 2010 .

[20]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[21]  Corinne Le Quéré,et al.  An international effort to quantify regional carbon fluxes , 2011 .

[22]  C. Sweeney,et al.  Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements , 2007 .

[23]  G. P. Zimmerman,et al.  The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle. , 2007 .

[24]  S. Doney,et al.  Atlantic and Arctic sea-air CO 2 fluxes, 1990-2009 , 2012 .

[25]  N. Gruber,et al.  Changing controls on oceanic radiocarbon: New insights on shallow‐to‐deep ocean exchange and anthropogenic CO2 uptake , 2012 .

[26]  Jacqueline Boutin,et al.  A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT) , 2012 .

[27]  P. Quay,et al.  Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake , 2003 .

[28]  Andrew J. Watson,et al.  Climatological Mean and Decadal Change in Surface Ocean Pco(2), and Net Sea-Air Co2 Flux Over the Global Oceans (Vol 56, Pg 554, 2009) , 2009 .

[29]  D. Randall,et al.  Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota , 1995, Nature.

[30]  A. Wallcraft,et al.  Comparisons of monthly mean 10 m wind speeds from satellites and NWP products over the global ocean , 2009 .

[31]  Tsutomu Ikeda,et al.  Biogeochemical fluxes through mesozooplankton , 2006 .

[32]  P. Ciais,et al.  A synthesis of carbon dioxide emissions from fossil-fuel combustion , 2012 .

[33]  Andrew J. Watson,et al.  A variable and decreasing sink for atmospheric CO2 in the North Atlantic , 2007 .

[34]  A. Watson,et al.  In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers , 2000 .

[35]  E. Buitenhuis,et al.  Biogeochemical fluxes through microzooplankton , 2010 .

[36]  S. Doney,et al.  An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009 , 2013 .

[37]  R. Wanninkhof,et al.  A large increase of the CO2 sink in the western tropical North Atlantic from 2002 to 2009 , 2012 .

[38]  R. Feely,et al.  Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations , 2006 .

[39]  A. Manning,et al.  Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network , 2006 .

[40]  A. Watson,et al.  Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network , 2009 .

[41]  J. Sarmiento,et al.  Revised budget for the oceanic uptake of anthropogenic carbon dioxide , 1992, Nature.

[42]  T. Naegler Reconciliation of excess 14 C-constrained global CO 2 piston velocity estimates , 2009 .

[43]  K. Lindsay,et al.  Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust , 2009 .

[44]  Taro Takahashi,et al.  Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data , 2009 .

[45]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[46]  K. Lindsay,et al.  Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean , 2006 .

[47]  T. Naegler Reconciliation of excess 14C-constrained global CO2 piston velocity estimates , 2009 .

[48]  Taro Takahashi,et al.  Sea–air CO 2 fluxes in the Southern Ocean for the period 1990–2009 , 2013 .

[49]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[50]  David W. J. Thompson,et al.  Interpretation of Recent Southern Hemisphere Climate Change , 2002, Science.

[51]  C. D. Keeling,et al.  An improved estimate of the isotopic air‐sea disequilibrium of CO2: Implications for the oceanic uptake of anthropogenic CO2 , 2001 .

[52]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[53]  K. Lindsay,et al.  Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport , 2007 .

[54]  Peter Schlosser,et al.  Measurements of air‐sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations , 2006 .

[55]  Wei-Jun Cai,et al.  Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? , 2011, Annual review of marine science.

[56]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[57]  A. Lenton,et al.  Impact of Historical Climate Change on the Southern Ocean Carbon Cycle , 2008 .

[58]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[59]  S. Khatiwala,et al.  Reconstruction of the history of anthropogenic CO2 concentrations in the ocean , 2009, Nature.

[60]  Larry P. Atkinson,et al.  Carbon and nutrient fluxes in continental margins : a global synthesis , 2010 .

[61]  P. Tans,et al.  Atmospheric O2/N2 changes, 1993–2002: Implications for the partitioning of fossil fuel CO2 sequestration , 2005 .

[62]  D. Hebert,et al.  Toward a universal relationship between wind speed and gas exchange: Gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment , 2011 .

[63]  C. Rödenbeck,et al.  Impact of climate change and variability on the global oceanic sink of CO2 , 2010 .

[64]  R. Feely,et al.  Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide , 1998, Nature.

[65]  C. Sabine,et al.  Estimation of anthropogenic CO2 inventories in the ocean. , 2010, Annual review of marine science.

[66]  Janusz Pempkowiak,et al.  The Baltic Sea : a global synthesis , 2010 .

[67]  A. Jacobson,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes , 2007 .

[68]  J. Sarmiento,et al.  Correction to “A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes” , 2007 .

[69]  Nicolas Gruber,et al.  Trends and regional distributions of land and ocean carbon sinks , 2009 .

[70]  R. Feely,et al.  Decadal variability of the air‐sea CO2 fluxes in the equatorial Pacific Ocean , 2006 .

[71]  Scott C. Doney,et al.  Global ocean storage of anthropogenic carbon , 2012 .

[72]  Taro Takahashi,et al.  Impact of climate change and variability on the global oceanic sink of CO2 , 2010 .

[73]  Peter Schlosser,et al.  Correction to “Measurements of air‐sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations” , 2006 .

[74]  M. Bender,et al.  Tracers in the Sea , 1984 .

[75]  A. Lenton,et al.  Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake , 2007 .

[76]  J. Triñanes,et al.  Procedures to create near real-time seasonal air-sea CO2 flux maps , 2010 .

[77]  Taro Takahashi,et al.  Oceanic sources, sinks, and transport of atmospheric CO2 , 2009 .

[78]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[79]  Scott C. Doney,et al.  Evaluation of ocean carbon cycle models with data‐based metrics , 2004 .

[80]  Taro Takahashi,et al.  Variability of global net sea–air CO2 fluxes over the last three decades using empirical relationships , 2010 .