Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation
暂无分享,去创建一个
Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment.