Synthesis and characterization of cubic Ag/TiO2 nanocomposites for the photocatalytic degradation of methyl orange in aqueous solutions

[1]  Zhaoqi Sun,et al.  Introduction of Ti3+ ions into heterostructured TiO2 nanotree arrays for enhanced photoelectrochemical performance , 2019, Applied Surface Science.

[2]  Jitao Chen,et al.  WS2 nanodots-modified TiO2 nanotubes to enhance visible-light photocatalytic activity , 2019, Materials Letters.

[3]  Wei Gou,et al.  A Zn(II)/anthracene coordination polymer showing highly efficient photocatalytic Cr(VI) reduction in aqueous solution , 2019, Inorganic Chemistry Communications.

[4]  Fan Zhang,et al.  Synthesis and characterization of L-arginine/Fe3O4 adsorbent for the removal of methyl orange from aqueous solutions , 2019, Ionics (Kiel).

[5]  Yadong Wu,et al.  Composite of nano-goethite and natural organic luffa sponge as template: Synergy of high efficiency adsorption and visible-light photocatalysis , 2018, Inorganic Chemistry Communications.

[6]  Akihiro Kushima,et al.  Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water , 2018, Nature Communications.

[7]  Jizhang Chen,et al.  Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors , 2018, Nano Energy.

[8]  Min Fu,et al.  Glutathione detection based on peroxidase-like activity of Co3O4–Montmorillonite nanocomposites , 2018, Sensors and Actuators B: Chemical.

[9]  Jianrong Chen,et al.  Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution , 2018 .

[10]  Ki‐Hyun Kim,et al.  TiO2‐based photocatalytic disinfection of microbes in aqueous media: A review , 2017, Environmental research.

[11]  Y. Yoon,et al.  Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2 , 2016, Scientific Reports.

[12]  Qixing Zhou,et al.  Fabrication of TiO2-Bi2WO6 Binanosheet for Enhanced Solar Photocatalytic Disinfection of E. coli: Insights on the Mechanism. , 2016, ACS applied materials & interfaces.

[13]  Jiaguo Yu,et al.  The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites , 2016 .

[14]  Pu Wang,et al.  Construction of TiO2 nano-tubes arrays coupled with Ag2S nano-crystallites photoelectrode and its enhanced visible light photocatalytic performance and mechanism , 2015 .

[15]  S. V. Hulle,et al.  Electrospun nanofibre membranes functionalised with TiO2 nanoparticles : evaluation of humic acid and bacterial removal from polluted water , 2015 .

[16]  Dongxue Han,et al.  Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance , 2015 .

[17]  Deliang Li,et al.  Effect of photo-corrosion of Ag2CO3 on visible light photocatalytic activity of two kinds of Ag2CO3/TiO2 prepared from different precursors , 2014 .

[18]  Jinlong Yang,et al.  Active hydrogen species on TiO2 for photocatalytic H2 production. , 2014, Physical chemistry chemical physics : PCCP.

[19]  P. Dobson,et al.  Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria , 2013, Journal of Nanoparticle Research.

[20]  T. Rao,et al.  Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. , 2013, ACS applied materials & interfaces.

[21]  M. Iborra-Clar,et al.  Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. , 2012, Journal of hazardous materials.

[22]  M. Tripathi,et al.  A review of TiO2 nanoparticles , 2011 .

[23]  Hemin Zhang,et al.  Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response , 2011 .

[24]  Lan Sun,et al.  Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition , 2010 .

[25]  R. Jain,et al.  Semiconductor‐mediated photocatalyzed degradation of erythrosine dye from wastewater using TiO2 catalyst , 2010, Environmental technology.

[26]  Fangli Yuan,et al.  Fabrication of Porous TiO2 Hollow Spheres and Their Application in Gas Sensing , 2010, Nanoscale research letters.

[27]  Y. Lai,et al.  Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. , 2009, Journal of hazardous materials.

[28]  K. Whitehead,et al.  Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light , 2009 .

[29]  Philip Ball,et al.  Water: Water — an enduring mystery , 2008, Nature.

[30]  C. Lin,et al.  Photocatalytic properties of porous TiO2/Ag thin films , 2008 .

[31]  G. Crini,et al.  Non-conventional low-cost adsorbents for dye removal: a review. , 2006, Bioresource technology.

[32]  C. Lin,et al.  Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions , 2006 .

[33]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[34]  T. Viraraghavan,et al.  Treatment of pulp and paper mill wastewater--a review. , 2004, The Science of the total environment.

[35]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.