Recognition of Antimicrobial Peptides by a Bacterial Sensor Kinase

[1]  Suzanne R. Kalb,et al.  Role of Mg2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells , 2004, Molecular microbiology.

[2]  J. Bliska,et al.  The Response Regulator PhoP of Yersinia pseudotuberculosis Is Important for Replication in Macrophages and for Virulence , 2004, Infection and Immunity.

[3]  Samuel I. Miller,et al.  Variation in lipid A structure in the pathogenic yersiniae , 2004, Molecular microbiology.

[4]  A. Danchin,et al.  The PhoP-PhoQ Two-Component Regulatory System of Photorhabdus luminescens Is Essential for Virulence in Insects , 2004, Journal of bacteriology.

[5]  B. Finlay,et al.  Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Hoffmann,et al.  The immune response of Drosophila , 2003, Nature.

[7]  Samuel I. Miller,et al.  Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides , 2003, Molecular microbiology.

[8]  R. Hancock,et al.  Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[9]  T. Ganz Defensins: antimicrobial peptides of innate immunity , 2003, Nature reviews. Immunology.

[10]  P. Rodríguez-Palenzuela,et al.  The Erwinia chrysanthemi phoP‐phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue , 2003, Molecular microbiology.

[11]  D. Maskell,et al.  Bordetella bronchiseptica PagP is a Bvg‐regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract , 2003, Molecular microbiology.

[12]  N. Salzman,et al.  Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin , 2003, Nature.

[13]  Andreas Peschel,et al.  How do bacteria resist human antimicrobial peptides? , 2002, Trends in microbiology.

[14]  Jesse T. Myers,et al.  pH-dependent regulation of lysosomal calcium in macrophages. , 2002, Journal of cell science.

[15]  Takaaki Ohtake,et al.  Innate antimicrobial peptide protects the skin from invasive bacterial infection , 2001, Nature.

[16]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[17]  C. Waldburger,et al.  Comparison of the Pseudomonas aeruginosa andEscherichia coli PhoQ Sensor Domains , 2001, The Journal of Biological Chemistry.

[18]  N. Cianciotto,et al.  Identification of Legionella pneumophila rcp, a pagP-Like Gene That Confers Resistance to Cationic Antimicrobial Peptides and Promotes Intracellular Infection , 2001, Infection and Immunity.

[19]  E. Lin,et al.  Quinones as the Redox Signal for the Arc Two-Component System of Bacteria , 2001, Science.

[20]  H. Le Moual,et al.  Characterization of the Catalytic Activities of the PhoQ Histidine Protein Kinase of Salmonella entericaSerovar Typhimurium , 2001, Journal of bacteriology.

[21]  E. Groisman,et al.  The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri , 2000, Cellular microbiology.

[22]  R. Hancock,et al.  The role of cationic antimicrobial peptides in innate host defences. , 2000, Trends in microbiology.

[23]  M. E. Castelli,et al.  The Phosphatase Activity Is the Target for Mg2+Regulation of the Sensor Protein PhoQ in Salmonella* , 2000, The Journal of Biological Chemistry.

[24]  M. Dathe,et al.  Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. , 1999, Biochimica et biophysica acta.

[25]  S. Miller,et al.  Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. , 1999, Science.

[26]  M. Bott,et al.  The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor , 1999, Molecular microbiology.

[27]  J. Foster,et al.  A Low pH-Inducible, PhoPQ-Dependent Acid Tolerance Response Protects Salmonella typhimurium against Inorganic Acid Stress , 1998, Journal of bacteriology.

[28]  S. Miller,et al.  Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. , 1997, Science.

[29]  R. Sauer,et al.  Signal Detection by the PhoQ Sensor-Transmitter , 1996, The Journal of Biological Chemistry.

[30]  S. Miller,et al.  phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. , 1996, The Journal of infectious diseases.

[31]  E. Groisman,et al.  Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella Virulence , 1996, Cell.

[32]  E. Nester,et al.  Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[34]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[35]  R. Hancock,et al.  The interaction of a recombinant cecropin/melittin hybrid peptide with the outer membrane of Pseudomonas aeruginosa , 1994, Molecular microbiology.

[36]  A. Grossman,et al.  Biochemical and genetic characterization of a competence pheromone from B. subtilis , 1994, Cell.

[37]  A. M. Pappenheimer,et al.  The story of a toxic protein, 1888–1992 , 1993, Protein science : a publication of the Protein Society.

[38]  S. Miller,et al.  Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B. Finlay,et al.  Characterization of the micro‐environment of Salmonella typhimurium–containing vacuoles within MDCK epithelial cells , 1992, Molecular microbiology.

[40]  M. Arthur,et al.  The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147 , 1992, Journal of bacteriology.

[41]  J. Mekalanos Environmental signals controlling expression of virulence determinants in bacteria , 1992, Journal of bacteriology.

[42]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[43]  M. Gilles-Gonzalez,et al.  A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti , 1991, Nature.

[44]  E. Groisman,et al.  Salmonella typhimurium phoP virulence gene is a transcriptional regulator. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Miller,et al.  A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Galán,et al.  Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. , 1989, Microbial pathogenesis.

[47]  E. Groisman,et al.  A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. , 1989, Science.

[48]  J. G. Sawyer,et al.  Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa , 1988, Infection and immunity.

[49]  Samuel I. Miller,et al.  LPS, TLR4 and infectious disease diversity , 2005, Nature Reviews Microbiology.

[50]  M. Klempner,et al.  Probing the phagolysosomal environment of human macrophages with a Ca2+-responsive operon fusion in Yersinia pestis , 1986, Nature.