A model for prediction of the transient rolling resistance of tyres based on inner-liner temperatures

ABSTRACT Measurements of rolling resistance in thermal equilibrium of a tyre, like measurements according to ISO 28580, do not allow statements about rolling resistances under other driving conditions. Such statements, however, are necessary to determine the energy consumption in driving cycles. Especially for the proper calculation of electric-vehicle remaining ranges and the selection of the respective driving strategies, the real amount of energy consumption is required. This paper presents a model approach, which by means of only one standardised rolling resistance measurement can be parameterised and, considering the present driving speed and tyre temperature, can predict the respective current rolling resistance.

[1]  J. Houghton,et al.  Climate change 1992 : the supplementary report to the IPCC scientific assessment , 1992 .

[2]  Jean-Pascal van Ypersele de Strihou Climate Change 2014 - Synthesis Report , 2015 .

[3]  D. J. Schuring,et al.  Effect of Tire Rolling Loss on Fuel Consumption of Trucks , 1982 .

[4]  S. Hobbs Climate Change 1992: The supplementary report to the IPCC scientific assessment , 1996 .

[5]  Atanas A. Popov,et al.  The rolling resistance of truck tyres under a dynamic vertical load , 2005 .

[6]  Manfred Mitschke,et al.  Dynamik der Kraftfahrzeuge , 1972 .

[7]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[8]  K. Shine,et al.  Intergovernmental panel on Climate change (IPCC),in encyclopedia of Enviroment and society,Vol.3 , 2007 .

[9]  W. Groß,et al.  Lehrbuch der Analysis , 1915 .

[10]  Erhard Cramer,et al.  Grundlagen der Wahrscheinlichkeitsrechnung und Statistik , 2014 .

[11]  W. V. Mars,et al.  An Analytical Model for the Transient Rolling Resistance Behavior of Tires , 1999 .

[12]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[13]  D. Schuring The Rolling Loss of Pneumatic Tires , 1980 .

[14]  Roger Brown,et al.  Physical Testing of Rubber , 1987 .

[15]  T. G. Ebbott,et al.  Tire Temperature and Rolling Resistance Prediction with Finite Element Analysis , 1999 .

[16]  Udo Kamps,et al.  Grundlagen der Wahrscheinlichkeitsrechnung und Statistik : ein Skript für Studierende der Informatik, der Ingenieur- und Wirtschaftswissenschaften ; mit 20 Tabellen , 2007 .

[17]  S. Futamura,et al.  A Simple Method of Handling Thermomechanical Coupling for Temperature Computation in a Rolling Tire , 2004 .

[18]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[19]  Gunther Eggeler,et al.  Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen , 2019 .

[20]  G. L. Hall,et al.  Transient Speed and Temperature Effects on Rolling Loss of Passenger Car Tires , 1985 .

[21]  Thomas A. Vilgis,et al.  Statistische Physik: Die Physik des Autoreifens: Kooperation zwischen Industrie und Theoretischer Physik – eine Illusion? , 2001 .

[22]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[23]  James A. Popio,et al.  Modeling Transient Rolling Resistance of Tires3 , 2007 .