A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems

Abstract In this paper, a new hybrid particle swarm optimization and genetic algorithm is proposed to minimize a simplified model of the energy function of the molecule. The proposed algorithm is called Hybrid Particle Swarm Optimization and Genetic Algorithm (HPSOGA). The HPSOGA is based on three mechanisms. The first mechanism is applying the particle swarm optimization to balance between the exploration and the exploitation process in the proposed algorithm. The second mechanism is the dimensionality reduction process and the population partitioning process by dividing the population into sub-populations and applying the arithmetical crossover operator in each sub-population in order to increase the diversity of the search in the algorithm. The last mechanism is applied in order to avoid the premature convergence and avoid trapping in local minima by using the genetic mutation operator in the whole population. Before applying the proposed HPSOGA to minimize the potential energy function of the molecule size, we test it on 13 unconstrained large scale global optimization problems with size up to 1000 dimensions in order to investigate the general performance of the proposed algorithm for solving large scale global optimization problems then we test the proposed algorithm with different molecule sizes with up to 200 dimensions. The proposed algorithm is compared against the standard particle swarm optimization to solve large scale global optimization problems and 9 benchmark algorithms, in order to verify the efficiency of the proposed algorithm for solving molecules potential energy function. The numerical experiment results show that the proposed algorithm is a promising and efficient algorithm and can obtain the global minimum or near global minimum of the molecular energy function faster than the other comparative algorithms.

[1]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[2]  Abdel-Rahman Hedar,et al.  Genetic algorithm and Tabu search based methods for molecular 3D-structure prediction , 2011 .

[3]  F. Cohen,et al.  Simplified Models for Understanding and Predicting Protein Structure , 2007 .

[4]  Kusum Deep,et al.  Minimization of Molecular Potential Energy Function Using newly developed Real Coded Genetic Algorithms , 2012 .

[5]  Nenad Mladenovic,et al.  A continuous variable neighborhood search heuristic for finding the three-dimensional structure of a molecule , 2008, Eur. J. Oper. Res..

[6]  Helio J. C. Barbosa,et al.  A GA-Simplex Hybrid Algorithm for Global Minimization of Molecular Potential Energy Functions , 2005, Ann. Oper. Res..

[7]  Shikha Agrawal,et al.  Fletcher-Reeves based Particle Swarm Optimization for prediction of molecular structure. , 2014, Journal of molecular graphics & modelling.

[8]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[9]  Kusum Deep,et al.  A new mutation operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[10]  Nelson Maculan,et al.  A Function to Test Methods Applied to Global Minimization of Potential Energy of Molecules , 2004, Numerical Algorithms.

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Francisco Herrera,et al.  A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..

[13]  John L. Klepeis,et al.  DIMACS Series in Discrete Mathematicsand Theoretical Computer Science Global Optimization Approaches in Protein Folding andPeptide , 2007 .

[14]  Jagdish Chand Bansal,et al.  MINIMIZATION OF MOLECULAR POTENTIAL ENERGY FUNCTION USING PARTICLE SWARM OPTIMIZATION , 2010 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Guo Ying An Improved Simulated Annealing Algorithm and Its Application in Vector Quantization Coding , 2008 .

[17]  Panos M. Pardalos,et al.  Optimization methods for computing global minima of nonconvex potential energy functions , 1994, J. Glob. Optim..

[18]  Kusum Deep,et al.  A new crossover operator for real coded genetic algorithms , 2007, Appl. Math. Comput..