The PIE Environment for First-Order-Based Proving, Interpolating and Eliminating

The PIE system aims at providing an environment for creating complex applications of automated first-order theorem proving techniques. It is embedded in Prolog. Beyond actual proving tasks, also interpolation and second-order quantifier elimination are supported. A macro feature and a LTEX formula pretty-printer facilitate the construction of elaborate formalizations from small, understandable and documented units. For use with interpolation and elimination, preprocessing operations allow to preserve the semantics of chosen predicates. The system comes with a built-in default prover that can compute interpolants.

[1]  Fangzhen Lin,et al.  On strongest necessary and weakest sufficient conditions , 2000, Artif. Intell..

[2]  Boris Konev,et al.  Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.

[3]  Daniel Kroening,et al.  Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic , 2011, VMCAI.

[4]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2017, Journal of Automated Reasoning.

[5]  Cezary Kaliszyk,et al.  FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover , 2015, LPAR.

[6]  Christoph Wernhard Computing with Logic as Operator Elimination: The ToyElim System , 2011, INAP/WLP.

[7]  David Toman,et al.  Fundamentals of Physical Design and Query Compilation , 2011, Fundamentals of Physical Design and Query Compilation.

[8]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.

[9]  William Craig,et al.  Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.

[10]  Kenneth L. McMillan,et al.  Applications of Craig Interpolants in Model Checking , 2005, TACAS.

[11]  Ian Horrocks,et al.  Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..

[12]  Jens Otten Restricting backtracking in connection calculi , 2010, AI Commun..

[13]  David Toman,et al.  On Enumerating Query Plans Using Analytic Tableau , 2015, TABLEAUX.

[14]  J. Gustafsson An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .

[15]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[16]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[17]  Björn Pelzer,et al.  System Description: E-KRHyper , 2007, CADE.

[18]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[19]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[20]  Maarten Marx,et al.  Queries determined by views: pack your views , 2007, PODS.

[21]  Christoph Wernhard,et al.  Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.

[22]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[23]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[24]  Renate A. Schmidt,et al.  Forgetting Concept and Role Symbols in ALCOIH μ + ( O , u )-Ontologies , 2016 .

[25]  Michael Benedikt,et al.  Generating low-cost plans from proofs , 2014, PODS.

[26]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[27]  Renate A. Schmidt,et al.  Concept Forgetting for ALCOI-Ontologies using an Ackermann Approach , 2015, Description Logics.

[28]  Norbert Manthey Coprocessor 2.0 - A Flexible CNF Simplifier - (Tool Presentation) , 2012, SAT.

[29]  Patrick Doherty,et al.  Computing Strongest Necessary and Weakest Sufficient Conditions of First-Order Formulas , 2001, IJCAI.

[30]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[31]  Patrick Koopmann,et al.  LETHE: Saturation-Based Reasoning for Non-Standard Reasoning Tasks , 2015, ORE.

[32]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[33]  Andreas Wolf,et al.  Integrating Logical Functions with ILF , 1994 .

[34]  Cezary Kaliszyk,et al.  Efficient Low-Level Connection Tableaux , 2015, TABLEAUX.

[35]  Andrei Voronkov,et al.  Interpolation and Symbol Elimination in Vampire , 2010, IJCAR.

[36]  Christoph Wernhard,et al.  Semantic Knowledge Partitioning , 2004, JELIA.

[37]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[38]  Renate A. Schmidt,et al.  Forgetting Concept and Role Symbols in ALCOIHµ+(∇, ⊓)-Ontologies , 2016, IJCAI.

[39]  Christoph Wernhard,et al.  Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications , 2015, TABLEAUX.

[40]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[41]  Michael Benedikt,et al.  Rewriting Guarded Negation Queries , 2013, MFCS.

[42]  Carsten Lutz,et al.  Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.

[43]  Christoph Wernhard Projection and scope-determined circumscription , 2012, J. Symb. Comput..

[44]  Christoph Wernhard,et al.  Heinrich Behmann's Contributions to Second-Order Quantifier Elimination from the View of Computational Logic , 2017, ArXiv.

[45]  William Craig,et al.  Elimination problems in logic: a brief history , 2008, Synthese.

[46]  Andrei Voronkov,et al.  Vinter: A Vampire-Based Tool for Interpolation , 2012, APLAS.

[47]  Mikolás Janota,et al.  Digital Object Identifier (DOI): , 2000 .

[48]  Daniel Kroening,et al.  An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic , 2010, Journal of Automated Reasoning.

[49]  Alan Nash,et al.  Views and queries: Determinacy and rewriting , 2010, ACM Trans. Database Syst..

[50]  Willem Conradie,et al.  On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.

[51]  Christoph Wernhard,et al.  Tableaux for Projection Computation and Knowledge Compilation , 2009, TABLEAUX.

[52]  Bernd I. Dahn Robbins Algebras Are Boolean: A Revision of McCune's Computer-Generated Solution of Robbins Problem , 1998 .

[53]  Mark E. Stickel,et al.  A prolog technology theorem prover: Implementation by an extended prolog compiler , 1986, Journal of Automated Reasoning.

[54]  Wilhelm Ackermann,et al.  Zum Eliminationsproblem der mathematischen Logik , 1935 .

[55]  Maria Paola Bonacina,et al.  Interpolation Systems for Ground Proofs in Automated Deduction: a Survey , 2015, Journal of Automated Reasoning.

[56]  Heinrich Behmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .