Dynamic Optimization with Applications to Dynamic Rate Queues

This tutorial presents recent developments in the management of communications services and applies broadly to services involving the leasing of shared resources. These problems are more realistically modeled by queues with time-varying rates or more simply, dynamic rate queues. We first provide a review and summary of relevant results for various fundamental dynamic rate queues. The focus here is on approximations of these queueing models by low-dimensional dynamical systems. The dynamic optimization of constrained dynamical systems is based on the calcu- lus of variations and its various incarnations over the past three centuries. We discuss these methods in the context of Lagrangians, Hamiltonians, and Bellman value func- tions. Finally, we provide examples where we apply these optimization techniques to dynamic rate queues motivated by communications decision problems.

[1]  R. Feynman The principle of least action in quantum mechanics , 1942 .

[2]  C. Lanczos The variational principles of mechanics , 1949 .

[3]  A. Prékopa ON POISSON AND COMPOSED POISSON STOCHASTIC SET FUNCTIONS , 1957 .

[4]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  B. L. Miller Finite state continuous time Markov decision processes with an infinite planning horizon , 1968 .

[7]  D. Jagerman Some properties of the erlang loss function , 1974 .

[8]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[9]  D. L. Jagerman,et al.  Nonstationary blocking in telephone traffic , 1975, The Bell System Technical Journal.

[10]  C. E. Agnew,et al.  Dynamic Modeling and Control of Congestion-Prone Systems , 1976, Oper. Res..

[11]  Frank Kelly,et al.  Reversibility and Stochastic Networks , 1979 .

[12]  Ward Whitt,et al.  Heavy-Traffic Limits for Queues with Many Exponential Servers , 1981, Oper. Res..

[13]  William A. Massey,et al.  Asymptotic Analysis of the Time Dependent M/M/1 Queue , 1985, Math. Oper. Res..

[14]  Robert L. Smith,et al.  A New Optimality Criterion for Nonhomogeneous Markov Decision Processes , 1987, Oper. Res..

[15]  Wallace J. Hopp,et al.  Technical Note - Identifying Forecast Horizons in Nonhomogeneous Markov Decision Processes , 1989, Oper. Res..

[16]  P. Kolesar,et al.  The Pointwise Stationary Approximation for Queues with Nonstationary Arrivals , 1991 .

[17]  Raymond L. Smith,et al.  Rolling Horizon Procedures in Nonhomogeneous Markov Decision Processes , 1992, Oper. Res..

[18]  Izak Duenyas,et al.  A Stopping Rule for Forecasting Horizons in Nonhomogeneous Markov Decision Processes , 1992, Oper. Res..

[19]  Ward Whitt,et al.  The Physics of the Mt/G/∞ Queue , 1993, Oper. Res..

[20]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[21]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[22]  M. Petit Dynamic optimization. The calculus of variations and optimal control in economics and management : by Morton I. Kamien and Nancy L. Schwartz. Second Edition. North-Holland (Advanced Textbooks in Economics), Amsterdam and New York, 1991. Pp. xvii+377. ISBN0-444- 01609-0 , 1994 .

[23]  W. A. Massey,et al.  An Analysis of the Modified Offered-Load Approximation for the Nonstationary Erlang Loss Model , 1994 .

[24]  Avishai Mandelbaum,et al.  Strong Approximations for Time-Dependent Queues , 1995, Math. Oper. Res..

[25]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[26]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[27]  Avishai Mandelbaum,et al.  Strong approximations for Markovian service networks , 1998, Queueing Syst. Theory Appl..

[28]  L. Sennott Stochastic Dynamic Programming and the Control of Queueing Systems , 1998 .

[29]  W. A. Massey,et al.  Uniform acceleration expansions for Markov chains with time-varying rates , 1998 .

[30]  G. Thompson,et al.  Optimal Control Theory: Applications to Management Science and Economics , 2000 .

[31]  Michael C. Fu,et al.  Monotone Optimal Policies for a Transient Queueing Staffing Problem , 2000, Oper. Res..

[32]  Mark E. Lewis,et al.  Optimal Pricing and Admission Control in a Queueing System with Periodically Varying Parameters , 2004, Queueing Syst. Theory Appl..

[33]  Avishai Mandelbaum,et al.  Call Centers with Impatient Customers: Many-Server Asymptotics of the M/M/n + G Queue , 2005, Queueing Syst. Theory Appl..

[34]  William A. Massey,et al.  Variational optimization for call center staffing , 2005, 2005 Richard Tapia Celebration of Diversity in Computing Conference.

[35]  Mor Harchol-Balter,et al.  Fluid and diffusion limits for transient sojourn times of processor sharing queues with time varying rates , 2006, Queueing Syst. Theory Appl..

[36]  W. A. Massey,et al.  DYNAMIC PRICING TO CONTROL LOSS SYSTEMS WITH QUALITY OF SERVICE TARGETS , 2009, Probability in the Engineering and Informational Sciences.

[37]  R. Sato,et al.  Symmetry and Economic Invariance: An Introduction , 2012 .