Unsteady Strong Shock Interactions in a Transonic Turbine : Experimental and Numerical Analysis

The aerothermal performance of highly loaded high-pressure turbines is abated by the unsteady impact of the vane shocks on the rotor. This paper presents a detailed physical analysis of the stator-rotor interaction in a state-of-the-art transonic turbine stage at three pressure ratios. The experimental characterization of the steady and unsteady flowfield was performed in a compression tube test rig. The calculations were performed using ONERA's code elsA. This original comparison leads to an improved understanding of the complex unsteady flow physics of a high-pressure turbine stage. The vane shock impingement on the rotor originates a separation bubble on the rotor crown that is responsible for the generation of high losses. A model based on rothalpy conservation has been used to assess the pressure loss. The analysis of the unsteady forcing relates the shock patterns with the force fluctuations.

[1]  Roger W. Ainsworth,et al.  Surface Heat Transfer Fluctuations on a Turbine Rotor Blade Due to Upstream Shock Wave Passing , 1989 .

[2]  R. S. Abhari,et al.  Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations , 1991 .

[3]  D. Arnal,et al.  Théorie de l'instabilité laminaire et critères de transition en écoulement bi et tridimensionnel , 1984 .

[4]  Tony Arts,et al.  Investigation of the flow field downstream of a turbine trailing edge cooled nozzle guide vane , 1996 .

[5]  T. Yasa,et al.  Performance analysis of a transonic high-pressure turbine , 2007 .

[6]  Tony Arts,et al.  The VKI Compression Tube Annular Cascade Facility CT3 , 1992 .

[7]  Michael B. Giles,et al.  Nozzle Guide Vane Shock Wave Propagation and Bifurcation in a Transonic Turbine Rotor , 1990 .

[8]  Michael G. Dunn,et al.  Investigation of unsteady flow through a transonic turbine stage : data/prediction comparison for time-averaged and phase-resolved pressure data , 1992 .

[9]  R. Dénos Influence of temperature transients and centrifugal force on fast-response pressure transducers , 2002 .

[10]  T. Yasa,et al.  Application of Hot-Wire Anemometry in a Blow-Down Turbine Facility , 2007 .

[11]  Meng-Sing Liou,et al.  Multigrid calculation of three-dimensional viscous cascade flows , 1991 .

[12]  O. Popp,et al.  Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade , 1999 .

[13]  Torsten Fransson,et al.  Investigation of Unsteady Aerodynamic Blade Excitation Mechanisms in a Transonic Turbine Stage—Part I: Phenomenological Identification and Classification , 2002 .

[14]  U. Okapuu Some Results From Tests on a High Work Axial Gas Generator Turbine , 1974 .

[15]  Guillermo Paniagua,et al.  Effect of vane-rotor interaction on the unsteady flowfield downstream of a transonic high pressure turbine , 2005 .

[16]  L. Cambier,et al.  elsA - An efficient object-oriented solution to CFD complexity , 2002 .

[17]  H. M. Felici,et al.  Numerical analysis of three-dimensional unsteady hot streak migration and shock interaction in a turbine stage , 1996 .

[18]  Michael B. Giles,et al.  Stator/rotor interaction in a transonic turbine , 1988 .

[19]  F. H. Kost,et al.  Shock Boundary Layer Interaction on High Turning Transonic Turbine Cascades , 1979 .

[20]  F. Menter Improved two-equation k-omega turbulence models for aerodynamic flows , 1992 .

[21]  R. Dénos,et al.  Effect of the hub endwall cavity flow on the flow-field of a transonic high-pressure turbine , 2004 .

[22]  R. Delaney,et al.  Investigation of unsteady flow through transonic turbine stage. I - Analysis , 1990 .

[23]  Theodosios Korakianitis,et al.  On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 1—Description of the Approach , 1992 .

[24]  F. Martelli,et al.  Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage , 2001 .