Impact of High Fidelity Battery Models for Vehicle Applications

[1]  Ralph E. White,et al.  A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System , 2005 .

[2]  Sarma B. K. Vrudhula,et al.  Battery Modeling for Energy-Aware System Design , 2003, Computer.

[3]  Ralph E. White,et al.  Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy , 1998 .

[4]  A. K. Mukhopadhyay Fuel Economy , 1918, Nature.

[5]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[6]  W. Gu,et al.  THERMAL-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL , 1999 .

[7]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[8]  Namwook Kim,et al.  Autonomie model validation with test data for 2010 Toyota Prius , 2012 .

[9]  Mo-Yuen Chow,et al.  Comprehensive dynamic battery modeling for PHEV applications , 2010, IEEE PES General Meeting.

[10]  Valerie H. Johnson,et al.  Battery performance models in ADVISOR , 2002 .

[11]  Birgitte Bak-Jensen,et al.  Modeling of the CIGRE Low Voltage Test Distribution Network and the Development of Appropriate Controllers , 2013 .

[12]  Charles Delacourt,et al.  Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State Diffusivity , 2011 .

[13]  Nordin Saad,et al.  Influence of motor size and efficiency on acceleration, fuel economy and emissions of split-parallel hybrid electric vehicle , 2013, 2013 IEEE Symposium on Industrial Electronics & Applications.

[14]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[15]  Kaushik Rajashekara Power Electronics and Control for Hybrid and Fuel Cell Vehicles , 2005 .

[16]  Aymeric Rousseau,et al.  System Analysis Using Multiple Expert Tools , 2011 .

[17]  Jeffrey R. Belt,et al.  Battery Test Manual For Plug-In Hybrid Electric Vehicles , 2008 .

[18]  Takashi Itoh,et al.  Electrochemical stability of thin film LiMn2O4 cathode in organic electrolyte solutions with different compositions at 55 °C , 2002 .

[19]  Joshua Lo,et al.  Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range , 2013 .

[20]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[21]  Dirk Uwe Sauer,et al.  Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs , 2012 .

[22]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[23]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[24]  Hongwen He,et al.  Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach , 2011 .

[25]  Michael Fowler,et al.  Internal Resistance Optimization Utilizing “Just in Time” Control , 2015 .

[26]  John McPhee,et al.  A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation , 2014 .

[27]  T Williams,et al.  FUEL CONSUMPTION TESTING OF HEAVY GOODS VEHICLES , 1981 .

[28]  W T Hollowell,et al.  PARTNERSHIP FOR A NEW GENERATION OF VEHICLES , 1996 .

[29]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[30]  Dushan Boroyevich,et al.  Lithium-based energy storage management for DC distributed renewable energy system , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[31]  Jean Alzieu,et al.  Improvement of intelligent battery controller : state-of-charge indicator and associated functions , 1997 .

[32]  Andreas Jossen,et al.  Methods for state-of-charge determination and their applications , 2001 .

[33]  Bin Liu,et al.  TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries , 2013, Scientific Reports.

[34]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[35]  Dechun Li,et al.  Inhibition of copper corrosion by several Schiff bases in aerated halide solutions , 2002 .

[36]  Daniel H. Doughty,et al.  Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells. , 2004 .

[37]  Mehmet Kopac,et al.  Determination of optimum speed of an internal combustion engine by exergy analysis , 2005 .

[38]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[39]  Hosam K. Fathy,et al.  Reduction of an Electrochemistry-Based Li-Ion Battery Health Degradation Model via Constraint Linearization and Pade´ Approximation , 2010 .

[40]  Diane K. Michelson,et al.  Applied Statistics for Engineers and Scientists , 2001, Technometrics.

[41]  Malcolm McCulloch,et al.  Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions , 2011 .

[42]  Siamak Farhad,et al.  Simplified Electrochemical Multi-Particle Model for LiFePO4 Cathodes in Lithium-Ion Batteries , 2015 .

[43]  Helmut Ehrenberg,et al.  The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. , 2012, Physical chemistry chemical physics : PCCP.

[44]  J. Devore,et al.  Applied statistics for engineers and scientists , 1994 .

[45]  Shuang Gao,et al.  Transient Stability Analysis of SMES for Smart Grid With Vehicle-to-Grid Operation , 2012, IEEE Transactions on Applied Superconductivity.

[46]  Taeyoung Han,et al.  Simulation of lithium iron phosphate lithiation/delithiation: Limitations of the core–shell model , 2014 .

[47]  Taeyoung Han,et al.  Full-Range Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis , 2014 .

[48]  John Smart,et al.  Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project , 2012 .

[49]  Minoru Umeda,et al.  Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods , 2003 .

[50]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[51]  Iqbal Husain,et al.  Electric and hybrid vehicles : design fundamentals , 2003 .

[52]  Ralph E. White,et al.  Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory , 2004 .

[53]  Ehsan Samadani,et al.  Thermal Behavior of Two Commercial Li-Ion Batteries for Plug-in Hybrid Electric Vehicles , 2014 .

[54]  Zhongwei Chen,et al.  Model-Based Prediction of Composition of an Unknown Blended Lithium-Ion Battery Cathode , 2015 .

[55]  W. Agnew,et al.  Review of the Research Program of the Partnership for a New Generation of Vehicles. Seventh Report , 2000 .

[56]  Ehsan Samadani,et al.  Empirical Modeling of Lithium-ion Batteries Based on Electrochemical Impedance Spectroscopy Tests , 2015 .

[57]  Anthony R. Olsen,et al.  Environmental Protection Agency, U.S. , 2013 .

[58]  Kai Strunz,et al.  Electric Vehicle Battery Technologies , 2013 .

[59]  T. Finley Battery Degradation Modeling For Vehicle Applications , 2014 .

[60]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[61]  R. Thomas,et al.  Lithium-Ion Batteries Hazard and Use Assessment , 2012 .

[62]  Bor Yann Liaw,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells II. Application to Nickel‐Cadmium and Nickel‐Metal Hydride Cells , 1998 .

[63]  Mohammadhosein Safari,et al.  Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to lithium iron phosphate. , 2014, Physical chemistry chemical physics : PCCP.

[64]  Shumei Cui,et al.  Hybrid Switched Reluctance Motor and Drives Applied on a Hybrid Electric Car , 2011 .