Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy

An important aim of nanoparticle research is to understand how the properties of materials depend on their size and shape. In this Invited Article I describe how time-resolved spectroscopy can be used to measure physical properties of nanometre sized objects such as the characteristic time scales for electron–phonon coupling and heat dissipation, and their elastic moduli. The electron–phonon coupling and heat dissipation measurements are important for applications of particles that involve conduction of heat or electricity. On the other hand, the elastic moduli studies provide fundamental information about the properties of nanomaterials. The results of these experiments show that nanometre sized particles can have very different properties compared to the corresponding bulk material. For example, we have recently shown that gold nanorods produced by wet chemical methods have much smaller elastic moduli (an 18% decrease in Young’s modulus) compared to bulk gold.

[1]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[2]  M. Broyer,et al.  Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles , 2004 .

[3]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[4]  C. Flytzanis,et al.  Acoustic Vibration of Metal Films and Nanoparticles , 2000 .

[5]  J. Zhang,et al.  Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface , 1997 .

[6]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[7]  J. Zhang,et al.  Ultrafast study of electronic relaxation dynamics in Au11 nanoclusters , 2004 .

[8]  J. Simon,et al.  Subpicosecond Transient Dynamics in Gold Nanoparticles Encapsulated by a Fluorophore-Terminated Monolayer , 2003 .

[9]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[10]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[11]  M. Broyer,et al.  Quadrupolar vibrational mode of silver clusters from plasmon-assisted Raman scattering , 1999 .

[12]  Hiroshi Yao,et al.  Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization , 2004 .

[13]  J. Zhang,et al.  Ultrafast electron dynamics at the liquid–metal interface: Femtosecond studies using surface plasmons in aqueous silver colloid , 1995 .

[14]  Gary Gibson,et al.  An introduction to seismology , 1996, Inf. Manag. Comput. Secur..

[15]  Gyoujin Cho,et al.  Comparative Investigation of Energy Relaxation Dynamics of Gold Nanoparticles and Gold−Polypyrrole Encapsulated Nanoparticles , 2003 .

[16]  J. Heath,et al.  Crystalline, Shape, and Surface Anisotropy in Two Crystal Morphologies of Superparamagnetic Cobalt Nanoparticles by Ferromagnetic Resonance , 2001 .

[17]  J. Melinger,et al.  Ultrafast Dynamics of Gold-Based Nanocomposite Materials† , 2003 .

[18]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[19]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[20]  S. Nepijko,et al.  Composition and lattice structure of fivefold twinned nanorods of silver , 2002 .

[21]  J. Weertman Hall-Petch strengthening in nanocrystalline metals , 1993 .

[22]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[23]  A. Arbouet,et al.  Acoustic vibrations of metal nanoparticles: high order radial mode detection , 2004 .

[24]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[25]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[26]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[27]  John E. Sader,et al.  Softening of the symmetric breathing mode in gold particles by laser-induced heating , 2003 .

[28]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[29]  F. Wise,et al.  COHERENT ACOUSTIC PHONONS IN A SEMICONDUCTOR QUANTUM DOT , 1997 .

[30]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[31]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[32]  M. El-Sayed,et al.  Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium , 2002 .

[33]  N. Del Fatti,et al.  Ultrafast optical nonlinear properties of metal nanoparticles , 2001 .

[34]  D. Belitskus Fiber and Whisker Reinforced Ceramics for Structural Applications , 1993 .

[35]  M. G. Warner,et al.  Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions , 2002 .

[36]  L. Marks Experimental studies of small particle structures , 1994 .

[37]  M. Maillard,et al.  Electron-phonon scattering in metal clusters. , 2003, Physical review letters.

[38]  Catherine J. Murphy,et al.  CONTROLLING THE ASPECT RATIO OF INORGANIC NANORODS AND NANOWIRES , 2002 .

[39]  H. Girault,et al.  Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. , 2004, The Journal of chemical physics.

[40]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[41]  A. Henglein,et al.  Laser-Induced Inter-Diffusion in AuAg Core−Shell Nanoparticles , 2000 .

[42]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[43]  A Paul Alivisatos,et al.  A single-electron transistor made from a cadmium selenide nanocrystal , 1997, Nature.

[44]  G. Hartland,et al.  Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles , 1998 .

[45]  Rémi Jullien,et al.  The Solid State: From Superconductors to Superalloys , 1989 .

[46]  James G. Fujimoto,et al.  Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures , 1984, Topical Meeting on Ultrafast Phenomena.

[47]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[48]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[49]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[50]  F. Sang,et al.  Parametric study of NCl(a1Δ) and NCl(b1Σ) from the reaction of Cl/Cl2/He + HN3/He , 2002 .

[51]  Cheng-Dah Chen,et al.  The Shape Transition of Gold Nanorods , 1999 .

[52]  B. Nikoobakht,et al.  Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra , 2003 .

[53]  T. Kondow,et al.  Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution , 2000 .

[54]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[55]  Mostafa A. El-Sayed,et al.  Picosecond Self-Induced Thermal Lensing from Colloidal Silver Nanodisks , 2004 .

[56]  S. Silvestri,et al.  SIZE-DEPENDENT DYNAMICS OF COHERENT ACOUSTIC PHONONS IN NANOCRYSTAL QUANTUM DOTS , 1999 .

[57]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[58]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[59]  J. P. Callan,et al.  GaAs under Intense Ultrafast Excitation: Response of the Dielectric Function , 1998 .

[60]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[61]  Norris,et al.  Time-resolved observation of electron-phonon relaxation in copper. , 1987, Physical review letters.

[62]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[63]  D. Papaconstantopoulos,et al.  Handbook of the Band Structure of Elemental Solids , 1986 .

[64]  Cheng,et al.  Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors. , 1990, Physical review letters.

[65]  Sun,et al.  Femtosecond investigation of electron thermalization in gold. , 1993, Physical review. B, Condensed matter.

[66]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[67]  Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays. , 2004 .

[68]  Christophe Voisin,et al.  Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles , 2001 .

[69]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[70]  G. Hartland,et al.  Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation , 1998 .

[71]  R L Sandstrom,et al.  Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. , 2000, Science.

[72]  Cheng,et al.  Theory for displacive excitation of coherent phonons. , 1992, Physical review. B, Condensed matter.

[73]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[74]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[75]  G. Pharr,et al.  On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying , 1995 .

[76]  Gregory V. Hartland,et al.  Photophysics of Nanometer Sized Metal Particles: Electron−Phonon Coupling and Coherent Excitation of Breathing Vibrational Modes , 2000 .

[77]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[78]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[79]  Gary L. Eesley,et al.  Observation of Nonequilibrium Electron Heating in Copper , 1983 .

[80]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[81]  Paul Mulvaney,et al.  Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. , 2003, Journal of the American Chemical Society.

[82]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[83]  Fujii,et al.  Low-frequency Raman scattering from small silver particles embedded in SiO2 thin films. , 1991, Physical review. B, Condensed matter.

[84]  N. D. Fatti,et al.  Nonequilibrium Electron Interactions in Metal Films , 1998, 0709.0815.

[85]  L. Zhigilei,et al.  Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description † , 2001 .

[86]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[87]  Christopher Hammond The Basics of Crystallography and Diffraction , 1997 .

[88]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[89]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[90]  Ultrafast optical relaxation dynamics in metallic nanoparticles: from bulk-like toward spatial confinement regime , 2000 .

[91]  Storz,et al.  Electron thermalization in gold. , 1992, Physical review. B, Condensed matter.

[92]  Thaddeus J. Norman,et al.  Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates. , 2003, Journal of the American Chemical Society.

[93]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[94]  M. Pileni,et al.  Structural investigations of copper nanorods by high-resolution TEM , 2000 .

[95]  H. Petek,et al.  Hot-electron dynamics at Cu(100), Cu(110), and Cu(111) surfaces:mComparison of experiment with Fermi-liquid theory , 1997 .

[96]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[97]  Prashant V. Kamat,et al.  Visible Laser Induced Fusion and Fragmentation of Thionicotinamide-Capped Gold Nanoparticles , 1999 .

[98]  M. El-Sayed,et al.  Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix , 2001 .

[99]  M. Fujii,et al.  Resonant Raman scattering by breathing modes of metal nanoparticles , 2001 .

[100]  M. El-Sayed,et al.  Picosecond Dynamics of Colloidal Gold Nanoparticles , 1996 .

[101]  A. Henglein,et al.  Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles , 2000 .

[102]  M. El-Sayed Spectroscopic determination of the melting energy of a gold nanorod , 2001 .

[103]  A. Henglein,et al.  Radiolytic Control of the Size of Colloidal Gold Nanoparticles , 1998 .

[104]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[105]  H. Petek,et al.  Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals , 1997 .

[106]  E. R. Thoen,et al.  Coherent acoustic phonons in PbTe quantum dots , 1998 .

[107]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[108]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[109]  R. Ispasoiu,et al.  Large Optical Limiting from Novel Metal-Dendrimer Nanocomposite Materials , 2000 .

[110]  A. Henglein,et al.  Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions , 1999 .

[111]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[112]  W. Fawcett,et al.  Electronic Communication in Fullerene Dimers. Electrochemical and Electron Paramagnetic Resonance Study of the Reduction of C120O , 1996 .

[113]  M. El-Sayed,et al.  Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster , 2002 .

[114]  C. Flytzanis,et al.  Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles , 2000 .

[115]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[116]  Hristina Petrova,et al.  Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures , 2004 .

[117]  Lagendijk,et al.  Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals. , 1992, Physical review. B, Condensed matter.

[118]  Seiichiro Koda,et al.  Size reduction of gold particles in aqueous solution by pulsed laser irradiation , 1998 .

[119]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[120]  S. Xie,et al.  Transmission-Electron-Microscopy Study on Fivefold Twinned Silver Nanorods , 2004 .

[121]  Aeschlimann,et al.  Time-resolved two-photon photoemission from Cu(100): Energy dependence of electron relaxation. , 1994, Physical Review B (Condensed Matter).

[122]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[123]  G. Hartland,et al.  Coherent Excitation of Acoustic Breathing Modes in Bimetallic Core−Shell Nanoparticles , 2000 .

[124]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[125]  Y. Takeda,et al.  Nanoscale soldering of metal nanoparticles for construction of higher-order structures. , 2003, Journal of the American Chemical Society.

[126]  C. E. Moran,et al.  Laser-Induced Reshaping of Metallodielectric Nanoshells under Femtosecond and Nanosecond Plasmon Resonant Illumination , 2004 .

[127]  I. B. Martini,et al.  Observation of acoustic quantum beats in nanometer sized Au particles , 1998 .

[128]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[129]  Berg,et al.  Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles , 2000, Physical review letters.

[130]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[131]  Paul Mulvaney,et al.  Laser Writing in Polarized Silver Nanorod Films , 2002 .

[132]  Stampfli,et al.  Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions. , 1994, Physical review. B, Condensed matter.

[133]  Fujimoto,et al.  Femtosecond electronic heat-transport dynamics in thin gold films. , 1987, Physical review letters.

[134]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[135]  A. Lagendijk,et al.  Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. , 1995, Physical review. B, Condensed matter.