An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit

An asymptotic-induced scheme for nonstationary transport equations with the diffusion scaling is developed. The scheme works uniformly for all ranges of mean-free paths. It is based on the asymptotic analysis of the diffusion limit of the transport equation. A theoretical investigation of the behavior of the scheme in the diffusion limit is given and an approximation property is proven. Moreover, numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.

[1]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[2]  G. Habetler,et al.  Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation , 1975 .

[3]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[4]  A. Bensoussan,et al.  Boundary Layers and Homogenization of Transport Processes , 1979 .

[5]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[6]  Edward W. Larsen Diffusion theory as an asymptotic limit of transport theory for nearly critical systems with small mean free paths , 1980 .

[7]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[8]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[9]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[10]  Raffaele Esposito,et al.  Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation , 1989 .

[11]  W. Hackbusch,et al.  Integralgleichungen : Theorie und Numerik , 1989 .

[12]  F. Poupaud,et al.  Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .

[13]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[14]  Edward W. Larsen Transport Acceleration Methods as Two-Level Multigrid Algorithms , 1991 .

[15]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[16]  C. D. Levermore,et al.  Fully-discrete numerical transfer in diffusive regimes , 1993 .

[17]  Thomas A. Manteuffel,et al.  Multilevel methods for transport equations in diffusive regimes , 1993 .

[18]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[19]  F. Golse,et al.  A numerical method for computing asymptotic states and outgoing distributions for kinetic linear half-space problems , 1995 .

[20]  G. Yang,et al.  A Fast Multigrid Algorithm for Isotropic Transport Problems I: Pure Scattering , 1995, SIAM J. Sci. Comput..

[21]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[22]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[23]  Jens Struckmeier,et al.  Implicit and iterative methods for the Boltzmann equation , 1996 .

[24]  G. Yang,et al.  A Fast Multigrid Algorithm for Isotropic Transport Problems. II: With Absorption , 1996, SIAM J. Sci. Comput..

[25]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[26]  Axel Klar,et al.  Asymptotic-Induced Domain Decomposition Methods for Kinetic and Drift Diffusion Semiconductor Equations , 1998, SIAM J. Sci. Comput..