Tangent-point energies and ropelength as Gamma-limits of discrete tangent-point energies on biarc curves
暂无分享,去创建一个
[1] H. von der Mosel,et al. Banach gradient flows for various families of knot energies , 2022, Journal of Evolution Equations.
[2] Alexander R. Klotz,et al. The ropelength of complex knots , 2021, Journal of Physics A: Mathematical and Theoretical.
[3] Keenan Crane,et al. Repulsive surfaces , 2021, ACM Trans. Graph..
[4] Henrik Schumacher,et al. A speed preserving Hilbert gradient flow for generalized integral Menger curvature , 2021, Advances in Calculus of Variations.
[5] Keenan Crane,et al. Repulsive Curves , 2020, ACM Trans. Graph..
[6] Max Wardetzky,et al. Variational convergence of discrete elasticae , 2019, IMA Journal of Numerical Analysis.
[7] Sören Bartels,et al. A simple scheme for the approximation of self-avoiding inextensible curves , 2018 .
[8] Soren Bartels,et al. Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves , 2018, Math. Comput..
[9] Sebastian Scholtes. Discrete knot energies , 2016, 1603.02464.
[10] S. Blatt. Curves Between Lipschitz and $$C^1$$C1 and Their Relation to Geometric Knot Theory , 2016, The Journal of Geometric Analysis.
[11] Sebastian Scholtes. Discrete thickness , 2014, 1401.5651.
[12] Sebastian Scholtes. Discrete M\"obius Energy , 2013, 1311.3056.
[13] Simon Blatt,et al. THE ENERGY SPACES OF THE TANGENT POINT ENERGIES , 2013 .
[14] H. Mosel,et al. On some knot energies involving Menger curvature , 2012, 1209.1527.
[15] Simon Blatt,et al. Regularity theory for tangent-point energies: The non-degenerate sub-critical case , 2012, 1208.3605.
[16] Jason H. Cantarella,et al. Shapes of tight composite knots , 2011, 1110.3262.
[17] Heiko von der Mosel,et al. Tangent-point self-avoidance energies for curves , 2010, 1006.4566.
[18] Eric J. Rawdon,et al. Knot Tightening by Constrained Gradient Descent , 2010, Exp. Math..
[19] John H. Maddocks,et al. BIARCS, GLOBAL RADIUS OF CURVATURE, AND THE COMPUTATION OF IDEAL KNOT SHAPES , 2005 .
[20] J. Simon,et al. POLYGONAL APPROXIMATION AND ENERGY OF SMOOTH KNOTS , 2003, math/0305414.
[21] Andrea Braides. Gamma-Convergence for Beginners , 2002 .
[22] Jason H. Cantarella,et al. On the minimum ropelength of knots and links , 2001, math/0103224.
[23] J. Maddocks,et al. Global curvature, thickness, and the ideal shapes of knots. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[24] Karl-Theodor Sturm,et al. New Directions in Dirichlet Forms , 1998 .
[25] H. Alt,et al. Linear Functional Analysis , 2016 .
[26] Enrico Valdinoci,et al. DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES , 2015 .
[27] P. Reiter. All curves in a C 1 -neighbourhood of a given embedded curve are isotopic , 2005 .
[28] J. Smutny. Global radii of curvature, and the biarc approximation of space curves , 2004 .
[29] F. Schuricht,et al. Global curvature for rectifiable loops , 2003 .
[30] Julian Havil. Gamma: Exploring Euler's Constant , 2003 .
[31] Oscar Gonzalez,et al. Curves, circles, and spheres , 2002 .
[32] Andrea Braides. Γ-convergence for beginners , 2002 .
[33] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[34] Jun O'Hara,et al. Energy of a knot , 1991 .
[35] O. Forster. Differential- und Integralrechnung einer Veränderlichen , 1980 .
[36] H. Piaggio. Calculus of Variations , 1954, Nature.
[37] O. Gonzalez,et al. F Ur Mathematik in Den Naturwissenschaften Leipzig Global Curvature and Self-contact of Nonlinearly Elastic Curves and Rods Global Curvature and Self-contact of Nonlinearly Elastic Curves and Rods , 2022 .