Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Catalysts Gains New Ground.

Polyolefins are of vast economic importance, which is reflected by an annual production of more than 70 million tons of polyethylene and polypropylene. While the major portion of these materials is produced with Zieglerand chromium-based catalysts, the older free-radical process that affords low-density polyethylene (LDPE) has maintained its significance.[1] Despite the necessity of working at over 1500 bar, 16 million tons of LDPE are currently consumed annually and new large plants continue to be built.[1d,e] One attractive feature of the high-pressure process is the possibility of incorporating functionalized olefins, such as vinyl acetate or acrylates. Incorporation of even small amounts of polar moieties can increase adhesion properties and compatibility of polyolefins with other materials. Another attractive feature is the different property profile of LDPE compared to the linear ethylene homoand copolymers produced by Ziegler catalysts. In the free-radical polymerization of ethylene, shortas well as long-chain branches are formed without any added co-monomer. Short-chain branches affect polymer properties, such as crystallinity and melting temperature, and are important in controlling polyolefin application properties. Long-chain branches (typically containing 100 or more carbon atoms) particularly influence the rheology of polyolefin melts, and result in good processing properties of LDPE. These considerations exemplify existing challenges for transition metal catalyzed coordination polymerization in low-pressure processes. In regard to the desirable incorporation of polar monomers, early transition metal based Ziegler catalysts and metallocenes are, unfortunately, highly sensitive to polar reagents. By comparison, late transition metal complexes are generally much more functional-group tolerant as a result of their less oxophilic nature. In addition, they can provide access to unique polyolefin branching structures. Recent discoveries of novel olefin-polymerization catalysts based on late transition metals represent major advances. These findings are highlighted and put into perspective with previous developments, by using ethylene polymerization as a guideline.[2, 3]

[1]  White,et al.  Oligomerisation of ethylene by bis(imino)pyridyliron and -cobalt complexes , 2000, Chemistry.

[2]  S. Mecking Cationic nickel and palladium complexes with bidentate ligands for the CC linkage of olefins , 2000 .

[3]  P. Short AKZO NOBEL: SET TO COMPETE: Portfolio reshaping divests historic fiber business, leaving three broad, diverse groups , 2000 .

[4]  M. Balsam,et al.  Zum Ersten, zum Zweiten ‐und zum Dritten , 2000 .

[5]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[6]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[7]  M. Freemantle TLC used as tool for combinatorial synthesis , 2000 .

[8]  E. Oñate,et al.  Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts : influence of temperature, ethylene pressure, and ligand structure on polymer properties , 2000 .

[9]  Göran Verspui,et al.  Ein stabiler, bemerkenswert aktiver, wasserlöslicher Pd‐Katalysator zur alternierenden Copolymerisation von Ethen und CO in Wasser , 2000 .

[10]  Sheldon,et al.  A Stable, Conspicuously Active, Water-Soluble Pd Catalyst for the Alternating Copolymerization of Ethene and CO in Water. , 2000, Angewandte Chemie.

[11]  J. Broyer,et al.  Emulsion polymerization of ethylene in water medium catalysed by organotransition metal complexes , 2000 .

[12]  Friedrich,et al.  Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms , 2000, Science.

[13]  S. Mecking,et al.  Coordination polymerization of ethylene in water by Pd (II) and Ni (II) catalysts , 2000 .

[14]  M. Brookhart,et al.  Low-Temperature Spectroscopic Observation of Chain Growth and Migratory Insertion Barriers in (α-Diimine)Ni(II) Olefin Polymerization Catalysts , 1999 .

[15]  Gregory A. Solan,et al.  IRON AND COBALT ETHYLENE POLYMERIZATION CATALYSTS BEARING 2,6-BIS(IMINO)PYRIDYL LIGANDS : SYNTHESIS, STRUCTURES, AND POLYMERIZATION STUDIES , 1999 .

[16]  F. Vizza,et al.  Water-Soluble Palladium(II) Catalysts for the Alternating Co- and Terpolymerization of CO and Olefins in Aqueous Phase , 1999 .

[17]  McLain,et al.  Chain walking: A new strategy to control polymer topology , 1999, Science.

[18]  George J. P. Britovsek,et al.  Auf der Suche nach einer neuen Generation von Katalysatoren zur Olefinpolymerisation: „Leben”︁ jenseits der Metallocene , 1999 .

[19]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[20]  B. Rieger,et al.  High molecular weight 1-olefin/carbon monoxide copolymers: a new class of versatile polymers , 1999 .

[21]  M. Brookhart,et al.  Iron-Based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear α-Olefins , 1998 .

[22]  R. Grubbs,et al.  Neutral Nickel(II)-Based Catalysts for Ethylene Polymerization , 1998 .

[23]  Maurice Brookhart,et al.  Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene , 1998 .

[24]  S. Mecking,et al.  Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and α-Olefins with Methyl Acrylate , 1998 .

[25]  G. Verspui Catalytic conversions in water. Part 9. High activity of the Pd/dpppr-s/Brønsted acid system in the alternating copolymerization of ethene and carbon monoxide {dpppr-s = C3H6-1,3-[P(C6H4-m-SO3Na)2]2} , 1998 .

[26]  Andrew J. P. White,et al.  Novel olefin polymerization catalysts based on iron and cobalt , 1998 .

[27]  K. Cavell,et al.  Single component N-O chelated arylnickel(II) complexes as ethene polymerisation and CO/ethene copolymerisation catalysts. Examples of ligand induced changes to the reaction pathway , 1997 .

[28]  J. Wendorff,et al.  Poly(norbornene carboxylic acid ester)s: Synthesis and properties , 1997 .

[29]  Andrew L. Johnson,et al.  Preparation of Linear α-Olefins Using Cationic Nickel(II) α-Diimine Catalysts , 1997 .

[30]  W. Kaminsky,et al.  Metallocenes for Polymer Catalysis , 1997 .

[31]  D. J. Tempel,et al.  Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins , 1996 .

[32]  B. Rieger,et al.  Late Transition Metal Complexes: Catalysts for a New Generation of Organic Polymers , 1996 .

[33]  B. Rieger,et al.  Komplexe „später”︁ Übergangsmetalle: Katalysatoren für eine neue Generation organischer Polymere , 1996 .

[34]  P. White,et al.  Mechanistic Studies of the Palladium(II)-Catalyzed Copolymerization of Ethylene with Carbon Monoxide , 1996 .

[35]  P. Budzelaar,et al.  Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide. , 1996, Chemical reviews.

[36]  S. Mecking,et al.  Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts , 1996 .

[37]  B. Novak,et al.  Living 1,2-Olefin-Insertion Polymerizations Initiated by Palladium(II) Alkyl Complexes: Block Copolymers and a Route to Polyacetylene-Hydrocarbon Diblocks , 1995 .

[38]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[39]  B. Rieger,et al.  Stereospezifische Olefinpolymerisation mit chiralen Metallocenkatalysatoren , 1995 .

[40]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[41]  Klaus Angermund,et al.  Struktur der aktiven Spezies und Erklärung des Wanderungsmechanismus bei der 2,ω‐polymerisation von α‐olefinen , 1995 .

[42]  Ayusman Sen,et al.  Water-Soluble Palladium(II) Compounds as Catalysts for the Alternating Copolymerization of Olefins with Carbon Monoxide in an Aqueous Medium , 1994 .

[43]  A. Tomov,et al.  Ethene polymerization by binuclear nickel—ylide complexes , 1994 .

[44]  R. Asselt,et al.  Insertion of Carbon Monoxide and Alkenes in Palladium-Carbon Bonds of Complexes Containing Rigid Bidentate Nitrogen Ligands: The First Example of Isolated Complexes in Stepwise Successive Insertion Reactions on the Way to Polyketones’ , 2001 .

[45]  R. Bau,et al.  Coordination polymerization of ethylene by single-component rhodium catalysts in protic solvents , 1993 .

[46]  Ayusman Sen Mechanistic aspects of metal-catalyzed alternating copolymerization of olefins with carbon monoxide , 1993 .

[47]  W. Risse,et al.  Transition‐metal‐catalyzed vinyl addition polymerizations of norbornene derivatives with ester groups , 1992 .

[48]  M. Doyle,et al.  Efficient palladium catalysts for the copolymerization of carbon monoxide with olefins to produce perfectly alternating polyketones , 1991 .

[49]  G. Wilke Beiträge zur nickelorganischen Chemie , 1988 .

[50]  G. Wilke Contributions to Organo‐Nickel Chemistry , 1988 .

[51]  K. Reichert,et al.  Linear and Branched Polyethylenes by New Coordination Catalysts , 1988 .

[52]  R. Mulhaupt,et al.  Ethylene homopolymerization with P, O‐chelated nickel catalysts , 1987 .

[53]  S. D. Ittel,et al.  Nickel catalysis for ethylene homo- and co-polymerization , 1987 .

[54]  J. Witte,et al.  Steuerung des Molekulargewichts von Polyethen bei der Synthese mit Bis(ylid)nickel‐Katalysatoren , 1987 .

[55]  K. Starzewski,et al.  Control of the Molecular Weight of Polyethene in Syntheses with Bis(ylide)nickel Catalysts , 1987 .

[56]  G. Fink,et al.  Novel Polymerization of α‐Olefins with the Catalyst System Nickel/Aminobis(imino)phosphorane , 1985 .

[57]  G. Fink,et al.  Neuartige Polymerisation von α-Olefinen mit dem Katalysatorsystem Nickel/Aminobis(imino)phosphoran , 1985 .

[58]  J. Witte,et al.  Hochaktive Ylid‐Nickel‐Katalysatoren für die Ethen‐Polymerisation , 1985 .

[59]  K. Starzewski,et al.  Highly Active Ylide-Nickel Catalysts for the Polymerization of Ethylene† , 1985 .

[60]  Y. Kissin,et al.  Dual functional catalysis for ethylene polymerization to branched polyethylene. I. Evaluation of catalytic systems , 1984 .

[61]  W. Keim NICKEL HYDRIDES: CATALYSIS IN OLIGOMERIZATION AND POLYMERIZATION REACTIONS OF OLEFINS , 1983 .

[62]  M. Peuckert,et al.  A new nickel complex for the oligomerization of ethylene , 1983 .

[63]  Ayusman Sen,et al.  Novel palladium(II)-catalyzed copolymerization of carbon monoxide with olefins , 1982 .

[64]  G. Koten,et al.  1,4-Diaza-1,3-butadiene (a-diimine) ligands: their coordination modes and the reactivity of their metal complexes , 1982 .

[65]  W. Keim,et al.  Novel Nickel‐ and Palladium‐Complexes with Aminobis(imino)phosphorane Ligands for the Polymerization of Ethylene , 1981 .

[66]  W. Keim,et al.  Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst , 1978 .

[67]  C. Krüger,et al.  Neuartige Koordinierungsweise von (Benzoylmethylen)‐triphenylphosphoran in einem Nickel‐Oligomerisierungskatalysator , 1978 .

[68]  G. Wilke,et al.  The “Nickel Effect” , 1973 .

[69]  Hans-Dieter Martin,et al.  Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren , 1955 .