Bayesian Numerical Homogenization

Numerical homogenization, i.e., the finite-dimensional approximation of solution spaces of PDEs with arbitrary rough coefficients, requires the identification of accurate basis elements. These basis elements are oftentimes found after a laborious process of scientific investigation and plain guesswork. Can this identification problem be facilitated? Is there a general recipe/decision framework for guiding the design of basis elements? We suggest that the answer to the above questions could be positive based on the reformulation of numerical homogenization as a Bayesian inference problem in which a given PDE with rough coefficients (or multiscale operator) is excited with noise (random right-hand side/source term) and one tries to estimate the value of the solution at a given point based on a finite number of observations. We apply this reformulation to the identification of bases for the numerical homogenization of arbitrary integro-differential equations and show that these bases have optimal recovery properties. In particular we show how rough polyharmonic splines can be rediscovered as the optimal solution of a Gaussian filtering problem.

[1]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[2]  C. Scovel,et al.  Brittleness of Bayesian Inference Under Finite Information in a Continuous World , 2013, 1304.6772.

[3]  Panagiotis E. Souganidis,et al.  A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs , 2008 .

[4]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[5]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[6]  Houman Owhadi,et al.  Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..

[7]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[8]  P. Diaconis Bayesian Numerical Analysis , 1988 .

[9]  J. Duchon Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .

[10]  A. Wald Statistical Decision Functions Which Minimize the Maximum Risk , 1945 .

[11]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[12]  H. Owhadi,et al.  Homogenization of the acoustic wave equation with a continuum of scales. , 2006 .

[13]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[14]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[15]  F. e. Calcul des Probabilités , 1889, Nature.

[16]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[17]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[18]  Yalchin Efendiev,et al.  Multiscale finite element and domain decomposition methods for high-contrast problems using local spectral basis functions , 2009 .

[19]  Todd Arbogast,et al.  IMPROVED ACCURACY FOR ALTERNATING-DIRECTION METHODS FOR PARABOLIC EQUATIONS BASED ON REGULAR AND MIXED FINITE ELEMENTS , 2007 .

[20]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[21]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[22]  R. Horne,et al.  Computing Absolute Transmissibility in the Presence of Fine-Scale Heterogeneity , 1987 .

[23]  H. Owhadi,et al.  Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.

[24]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[25]  Antoine Gloria,et al.  An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..

[26]  J. E. H. Shaw,et al.  A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .

[27]  H. Elman,et al.  DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .

[28]  Houman Owhadi,et al.  On the Brittleness of Bayesian Inference , 2013, SIAM Rev..

[29]  S. Spagnolo,et al.  Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .

[30]  Claude Le Bris,et al.  Une variante de la thorie de l'homognisation stochastique des oprateurs elliptiques , 2006 .

[31]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[32]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[33]  Yalchin Efendiev,et al.  Multiscale finite element methods for porous media flows and their applications , 2007 .

[34]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[35]  Michael Golomb,et al.  OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .

[36]  A. Copeland Review: John von Neumann and Oskar Morgenstern, Theory of games and economic behavior , 1945 .

[37]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[38]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[39]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[40]  Houman Owhadi,et al.  Qualitative Robustness in Bayesian Inference , 2014, 1411.3984.

[41]  M. Urner Scattered Data Approximation , 2016 .

[42]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[43]  Xiao-Hui Wu,et al.  Challenges and Technologies in Reservoir Modeling , 2009 .

[44]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[45]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[46]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[47]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[48]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[49]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[50]  Stefan A. Sauter,et al.  The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media , 2012, Multiscale Model. Simul..

[51]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[52]  S. Kozlov AVERAGING OF RANDOM OPERATORS , 1980 .

[53]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[54]  D. Myers Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .

[55]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[56]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[57]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[58]  Panagiotis E. Souganidis,et al.  Asymptotic and numerical homogenization , 2008, Acta Numerica.

[59]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[60]  Clemens Heitzinger,et al.  Multiscale modeling of fluctuations in stochastic elliptic pde models of nanosensors , 2014 .

[61]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[62]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[63]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[64]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[65]  Pierre-Louis Lions,et al.  Stochastic homogenization and random lattices , 2007 .

[66]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[67]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[68]  Guillaume Bal,et al.  Corrector Theory for MsFEM and HMM in Random Media , 2010, Multiscale Model. Simul..

[69]  G. Fasshauer Meshfree Methods , 2004 .

[70]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[71]  C. Scovel,et al.  Brittleness of Bayesian inference and new Selberg formulas , 2013, 1304.7046.