Bayesian Numerical Homogenization
暂无分享,去创建一个
[1] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[2] C. Scovel,et al. Brittleness of Bayesian Inference Under Finite Information in a Continuous World , 2013, 1304.6772.
[3] Panagiotis E. Souganidis,et al. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs , 2008 .
[4] H. Owhadi,et al. Metric‐based upscaling , 2007 .
[5] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[6] Houman Owhadi,et al. Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..
[7] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[8] P. Diaconis. Bayesian Numerical Analysis , 1988 .
[9] J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .
[10] A. Wald. Statistical Decision Functions Which Minimize the Maximum Risk , 1945 .
[11] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[12] H. Owhadi,et al. Homogenization of the acoustic wave equation with a continuum of scales. , 2006 .
[13] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[14] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[15] F. e.. Calcul des Probabilités , 1889, Nature.
[16] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[17] Ivan G. Graham,et al. A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..
[18] Yalchin Efendiev,et al. Multiscale finite element and domain decomposition methods for high-contrast problems using local spectral basis functions , 2009 .
[19] Todd Arbogast,et al. IMPROVED ACCURACY FOR ALTERNATING-DIRECTION METHODS FOR PARABOLIC EQUATIONS BASED ON REGULAR AND MIXED FINITE ELEMENTS , 2007 .
[20] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[21] Houman Owhadi,et al. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..
[22] R. Horne,et al. Computing Absolute Transmissibility in the Presence of Fine-Scale Heterogeneity , 1987 .
[23] H. Owhadi,et al. Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.
[24] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[25] Antoine Gloria,et al. An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..
[26] J. E. H. Shaw,et al. A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .
[27] H. Elman,et al. DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .
[28] Houman Owhadi,et al. On the Brittleness of Bayesian Inference , 2013, SIAM Rev..
[29] S. Spagnolo,et al. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .
[30] Claude Le Bris,et al. Une variante de la thorie de l'homognisation stochastique des oprateurs elliptiques , 2006 .
[31] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[32] George Papanicolaou,et al. A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..
[33] Yalchin Efendiev,et al. Multiscale finite element methods for porous media flows and their applications , 2007 .
[34] J. Neumann,et al. Theory of games and economic behavior , 1945, 100 Years of Math Milestones.
[35] Michael Golomb,et al. OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .
[36] A. Copeland. Review: John von Neumann and Oskar Morgenstern, Theory of games and economic behavior , 1945 .
[37] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[38] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[39] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[40] Houman Owhadi,et al. Qualitative Robustness in Bayesian Inference , 2014, 1411.3984.
[41] M. Urner. Scattered Data Approximation , 2016 .
[42] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[43] Xiao-Hui Wu,et al. Challenges and Technologies in Reservoir Modeling , 2009 .
[44] R. N. Desmarais,et al. Interpolation using surface splines. , 1972 .
[45] Marcus J. Grote,et al. Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..
[46] Assyr Abdulle,et al. Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..
[47] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[48] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[49] Houman Owhadi,et al. Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..
[50] Stefan A. Sauter,et al. The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media , 2012, Multiscale Model. Simul..
[51] A. O'Hagan,et al. Bayes–Hermite quadrature , 1991 .
[52] S. Kozlov. AVERAGING OF RANDOM OPERATORS , 1980 .
[53] Yalchin Efendiev,et al. Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..
[54] D. Myers. Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .
[55] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[56] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[57] Zongmin Wu,et al. Local error estimates for radial basis function interpolation of scattered data , 1993 .
[58] Panagiotis E. Souganidis,et al. Asymptotic and numerical homogenization , 2008, Acta Numerica.
[59] Roger Ghanem,et al. Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .
[60] Clemens Heitzinger,et al. Multiscale modeling of fluctuations in stochastic elliptic pde models of nanosensors , 2014 .
[61] I. Babuska,et al. Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .
[62] Olof Runborg,et al. Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.
[63] Todd Arbogast,et al. Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..
[64] G. Stampacchia,et al. Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..
[65] Pierre-Louis Lions,et al. Stochastic homogenization and random lattices , 2007 .
[66] John E. Osborn,et al. Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..
[67] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[68] Guillaume Bal,et al. Corrector Theory for MsFEM and HMM in Random Media , 2010, Multiscale Model. Simul..
[69] G. Fasshauer. Meshfree Methods , 2004 .
[70] I. Babuska,et al. Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .
[71] C. Scovel,et al. Brittleness of Bayesian inference and new Selberg formulas , 2013, 1304.7046.