Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation

Consider the semilinear parabolic equation −ut (x, t) + uxx + q(u) = f( x, t), with the initial condition u(x, 0) = u0(x), Dirichlet boundary conditions u(0 ,t )= ϕ0(t), u(1 ,t )= ϕ1(t) and a sufficiently regular source term q(·), which is assumed to be known ap riorion the range of u0(x). We investigate the inverse problem of determining the function q(·) outside this range from measurements of the Neumann boundary data ux(0 ,t )= ψ0(t), ux(1 ,t )= ψ1(t). Via the method of Carleman estimates, we derive global uniqueness of a solution (u, q) to this inverse problem and H¨ older stability of the functions u and q with respect to errors in the Neumann data ψ0 ,ψ 1, the initial condition u0 and the ap rioriknowledge of the function q (on the range of u0). The results are illustrated by numerical tests. The results of this paper can be extended to more general nonlinear parabolic equations.

[1]  A. Tayler,et al.  Mathematical Models in Applied Mechanics , 2002 .

[2]  Masahiro Yamamoto,et al.  LETTER TO THE EDITOR: One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization , 2000 .

[3]  Dongho Chae,et al.  Exact controllability for semilinear parabolic equations with Neumann boundary conditions , 1996 .

[4]  Vincenzo Capasso,et al.  Mathematical Modelling for Polymer Processing , 2003 .

[5]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[6]  M. Hanke A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems , 1997 .

[7]  William Rundell,et al.  An Inverse problem for a nonlinear parabolic equation , 1986 .

[8]  V. Isakov,et al.  On uniqueness in inverse problems for semilinear parabolic equations , 1993 .

[9]  V. Isakov Appendix -- Function Spaces , 2017 .

[10]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[11]  O Yu Emanuilov,et al.  Boundary controllability of parabolic equations , 1993 .

[12]  S. Benson foundations of chemical kinetics , 1960 .

[13]  N. V. Muzylev Uniqueness theorems for some converse problems of heat conduction , 1980 .

[14]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[15]  Heinz W. Engl,et al.  Stability estimates and regularization for an inverse heat conduction prolem in semi - infinite and finite time intervals , 1989 .

[16]  O. Alifanov,et al.  Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems , 1995 .

[17]  L. Hörmander Linear Partial Differential Operators , 1963 .

[18]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[19]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[20]  Masahiro Yamamoto,et al.  Lipschitz stability in inverse parabolic problems by the Carleman estimate , 1998 .

[21]  Otmar Scherzer,et al.  Uniqueness and stable determination of forcing terms in linear partial differential equations with overspecified boundary data , 1994 .

[22]  V. Isakov Uniqueness of recovery of some systems of semilinear partial differential equations , 2001 .

[23]  A. Bukhgeǐm,et al.  Carleman estimates for Volterra operators and uniqueness of inverse problems , 1984 .

[24]  Michael V. Klibanov,et al.  Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate , 2004 .

[25]  O Yu Emanuilov,et al.  Controllability of parabolic equations , 1995 .

[26]  Andreas Binder,et al.  Optimal cooling strategies in continuous casting of steel with variable casting speed , 1996 .

[27]  M. V. Klibanov,et al.  A class of inverse problems for nonlinear parabolic equations , 1986 .

[28]  Arnd Rösch,et al.  STABILITY ESTIMATES FOR THE IDENTIFICATION OF NONLINEAR HEAT TRANSFER LAWS , 1996 .

[29]  James V. Beck,et al.  Inverse Heat Conduction , 2023 .

[30]  Jenn-Nan Wang,et al.  Uniqueness in inverse problems for an elasticity system with residual stress by a single measurement , 2003 .

[31]  J. Cannon,et al.  Structural identification of an unknown source term in a heat equation , 1998 .

[32]  H. Engl,et al.  Identification of a temperature dependent heat conductivity by Tikhonov regularization , 2002 .

[33]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[34]  O. Alifanov Inverse heat transfer problems , 1994 .

[35]  PHILIPP KÜGLER,et al.  Identification of a Temperature Dependent Heat Conductivity from Single Boundary Measurements , 2003, SIAM J. Numer. Anal..

[36]  Victor Isakov,et al.  An inverse problem for the dynamical Lamé system with two sets of boundary data , 2003 .

[37]  Jun Zou,et al.  A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction , 2000 .