Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness

We investigate the photovoltaic performance of pseudomorphic In0.1Ga0.9N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.

[1]  W. Chou,et al.  Optical properties associated with strain relaxations in thick InGaN epitaxial films. , 2014, Optics express.

[2]  John E. Bowers,et al.  High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration , 2014 .

[3]  A. Ougazzaden,et al.  Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study , 2013 .

[4]  Daniel D. Koleske,et al.  Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells , 2012 .

[5]  J. Eymery,et al.  Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells , 2015 .

[6]  C. Humphreys,et al.  Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering , 2003 .

[7]  Naoki Kobayashi,et al.  Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence , 2018 .

[8]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[9]  C. Bougerol,et al.  Effect of the quantum well thickness on the performance of InGaN photovoltaic cells , 2014, 1602.07227.

[10]  L. Sang,et al.  InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties , 2015 .

[11]  Naoteru Shigekawa,et al.  Influence of InGaN/GaN multiple quantum well structure on photovoltaic characteristics of solar cell , 2014 .

[12]  James S. Speck,et al.  High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates , 2013 .

[13]  Liu Shi-ming,et al.  In x Ga 1 −x N/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77% , 2015 .

[14]  David Peyrade,et al.  Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells , 2013 .

[15]  Shota Yamamoto,et al.  Properties of nitride‐based photovoltaic cells under concentrated light illumination , 2012 .

[16]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[17]  James S. Speck,et al.  Electrical characterization of GaN p-n junctions with and without threading dislocations , 1998 .

[19]  D. Wee Characterisation of minority carrier diffusion length using the photocurrent technique in extrinsically doped GaN , 2014 .

[20]  J. Eymery,et al.  InGaN/GaN multiple‐quantum well heterostructures for solar cells grown by MOVPE: case studies , 2013 .

[21]  H. Riechert,et al.  Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data , 1999 .

[22]  J. Eymery,et al.  Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration , 2014 .