Active Cryovolcanism on Europa?

Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope (HST) using two different observing techniques. Roth et al. (2014) found line emission from the dissociation products of water. Sparks et al. (2016) found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al. (2016), raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileo Photopolarimeter-Radiometer (PPR) which shows a thermal anomaly at the same location, within the uncertainties (Spencer et al. 1999). The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ~1.8-2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa's internal water and ice and for seeking evidence of Europa's habitability. ~

[1]  J. Dohm,et al.  Putative ice flows on Europa: Geometric patterns and relation to topography collectively constrain material properties and effusion rates , 2005 .

[2]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[3]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[4]  S. Clifford,et al.  Ice‐covered water volcanism on Ganymede , 1987 .

[5]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[6]  D. Stevenson,et al.  Gas-driven water volcanism and the resurfacing of Europa , 1985 .

[7]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[8]  R. Pierrehumbert,et al.  Hydrothermal plume dynamics on Europa: Implications for chaos formation , 2004 .

[9]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[10]  Linking Europa's plume activity to tides, tectonics, and liquid water , 2014, 1502.06854.

[11]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[12]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.

[13]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[14]  Jonathan L. Mitchell,et al.  Elastic ice shells of synchronous moons: Implications for cracks on Europa and non-synchronous rotation of Titan , 2009, 0910.0032.

[15]  R. Greeley,et al.  Locating potential biosignatures on Europa from surface geology observations. , 2003, Astrobiology.

[16]  A. McEwen,et al.  The search for current geologic activity on Europa , 2000 .

[17]  Robert T. Pappalardo,et al.  Cryomagmatic Mechanisms for the Formation of Rhadamanthys Linea, Triple Band Margins, and Other Low-Albedo Features on Europa , 2000 .

[18]  B. R. Tufts,et al.  TIDAL‐TECTONIC PROCESSES AND THEIR IMPLICATIONS FOR THE CHARACTER OF EUROPA'S ICY CRUST , 2002 .

[19]  S. Baloga,et al.  Cryovolcanic emplacement of domes on Europa , 2017 .

[20]  Britney E. Schmidt,et al.  Ice collapse over trapped water bodies on Enceladus and Europa , 2015 .

[21]  G. W. Patterson,et al.  Active formation of ‘chaos terrain’ over shallow subsurface water on Europa , 2011, Nature.

[22]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[23]  Athar Yawar,et al.  Icarus , 2017, The Lancet.

[24]  R. Greeley,et al.  Resurfacing history of Europa from pole-to-pole geological mapping , 2004 .

[25]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[26]  L. Prockter,et al.  Constraints on the detection of cryovolcanic plumes on Europa , 2013 .

[27]  E. Bergeron,et al.  PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS , 2016, 1609.08215.

[28]  L. Germanovich,et al.  Fracturing and flow: Investigations on the formation of shallow water sills on Europa , 2016 .

[29]  Robert T. Pappalardo,et al.  The origin of domes on Europa: The role of thermally induced compositional diapirism , 2004 .

[30]  S. Fagents Considerations for effusive cryovolcanism on Europa: The post‐Galileo perspective , 2003 .

[31]  J. Spencer,et al.  Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties , 2010 .

[32]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[33]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[34]  J. Pearl,et al.  Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements , 2010 .

[35]  Gabriel Tobie,et al.  Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting , 2002 .

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  J. Bassis,et al.  On the application of simple rift basin models to the south polar region of Enceladus , 2012 .