Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88.

The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.

Adrian Tsang | Alex Atkins | Harris Shapiro | Asaf Salamov | Andrea Aerts | Peter J Schaap | Kaj Albermann | Jasmyn Pangilinan | Jane Grimwood | Johannes A Roubos | J. A. Roubos | David Culley | A. Salamov | G. Braus | J. Grimwood | J. Frisvad | S. Lucas | J. Nielsen | M. Andersen | M. L. Nielsen | L. Poulsen | K. Albermann | R. Berka | H. Pel | E. Lindquist | H. Menke | N. V. van Peij | S. Baker | I. Grigoriev | A. Aerts | Y. Lou | H. Shapiro | J. Magnuson | Diego Martínez | A. Tsang | P. Schaap | D. Culley | J. Pangilinan | G. Hofmann | J. B. Nielsen | H. Stam | C. Kubicek | Margarita Salazar | P. V. D. van de Vondervoort | J. Thykaer | K. Nielsen | R. Albang | S. Braus-Stromeyer | L. Corrochano | Z. Dai | P. W. V. van Dijck | L. Lasure | M. Meijer | S. Meijer | A. V. van Ooyen | R. Samson | J. M. van den Brink | A. Atkins | J. Nielsen | Susan Lucas | Piet W M van Dijck | Ziyu Dai | Hein Stam | Diego Martinez | Jens Nielsen | Mikael R Andersen | Igor V Grigoriev | Jens C Frisvad | Gerhard H Braus | Kristian F Nielsen | Jette Thykaer | Erika Lindquist | Scott E Baker | Albert J J van Ooyen | Jon K Magnuson | Randy M Berka | Christian P Kubicek | Gerald Hofmann | Peter J I van de Vondervoort | Margarita P Salazar | Richard Albang | Susanna A Braus-Stromeyer | Luis M Corrochano | Linda L Lasure | Hildegard Menke | Martin Meijer | Susan L Meijer | Jakob B Nielsen | Michael L Nielsen | Herman J Pel | Lars Poulsen | Rob A Samson | Johannes M van den Brink | Yigong Lou | Noël N M E van Peij | N. Van Peij | J. Nielsen | Jasmyn Pangilinan | Jens Nielsen | Jette Thykaer | Margarita P. Salazar | Noël N. M. E. van Peij

[1]  J. Frisvad,et al.  Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection). , 1988, Journal of chromatography.

[2]  A. H. Stouthamer,et al.  The complete karyotype of Aspergilius niger: the use of introduced electrophoretic mobility variation of chromosomes for gene assignment studies , 1994, Molecular and General Genetics MGG.

[3]  E. Martens-Uzunova,et al.  An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. , 2008, Fungal genetics and biology : FG & B.

[4]  Hiroshi Tanaka,et al.  Yellow Pigments of Aspergillus niger and Asp. awamori , 1966 .

[5]  Christian P. Kubicek,et al.  Aspergillus niger citric acid accumulation: do we understand this well working black box? , 2003, Applied Microbiology and Biotechnology.

[6]  F J Cabañes,et al.  Ochratoxin A production by strains of Aspergillus niger var. niger , 1994, Applied and environmental microbiology.

[7]  J. Smedsgaard Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. , 1997, Journal of chromatography. A.

[8]  Jens Nielsen,et al.  A trispecies Aspergillus microarray: Comparative transcriptomics of three Aspergillus species , 2008, Proceedings of the National Academy of Sciences.

[9]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[10]  Jibin Sun,et al.  Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics , 2007, Genome Biology.

[11]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[12]  K. Steube,et al.  New natural products from the sponge-derived fungus Aspergillus niger. , 2004, Journal of natural products.

[13]  A. Debets,et al.  Arginine and proline genes ofAspergillus niger , 1992, Antonie van Leeuwenhoek.

[14]  A. Debets,et al.  An electrophoretic karyotype of Aspergillus niger , 1990, Molecular and General Genetics MGG.

[15]  J. A. Roubos,et al.  Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 , 2007, Nature Biotechnology.

[16]  R. C. Shank,et al.  Structure and synthesis of kotanin and desmethylkotanin, metabolites of Aspergillus glaucus. , 1971, The Journal of organic chemistry.

[17]  S. Tamura,et al.  Isolation and Identification of Nigragillin as a Insecticidal Metabolite Produced by a Aspergillus niger , 1975 .

[18]  P. W. V. van Dijck,et al.  On the safety of a new generation of DSM Aspergillus niger enzyme production strains. , 2003, Regulatory toxicology and pharmacology : RTP.

[19]  A. Debets,et al.  Mitotic mapping in linkage group V of Aspergillus niger based on selection of auxotrophic recombinants by Novozym enrichment. , 1989, Canadian journal of microbiology.

[20]  Peter J. Punt,et al.  Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles , 2008, Molecular Genetics and Genomics.

[21]  J. Frisvad,et al.  Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV—VIS spectra (diodearray detection) , 1987 .

[22]  O. Yamada,et al.  Yellow Pigments of Aspergillus niger and Asp. awamori Part I , 1966 .

[23]  Jodie J. Yin,et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes , 2004, Genome Biology.

[24]  S. Ōmura,et al.  Funalenone, a novel collagenase inhibitor produced by Aspergillus niger. , 1999, The Journal of antibiotics.

[25]  Jens Christian Frisvad,et al.  Penicillium subgenus Penicillium - A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins , 2004 .

[26]  J. Nielsen,et al.  Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger , 2008, Molecular systems biology.

[27]  Jaideep P. Sundaram,et al.  Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus , 2008, PLoS genetics.

[28]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[29]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[30]  J. Frisvad,et al.  On the safety of Aspergillus niger – a review , 2002, Applied Microbiology and Biotechnology.

[31]  D. Cullen,et al.  The genome of an industrial workhorse , 2007, Nature Biotechnology.

[32]  B. Macris,et al.  Protein content and amino acid composition of certain fungi evaluated for microbial protein production. , 1975, Applied microbiology.

[33]  D. Dolphin Structure and synthesis , 1978 .

[34]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..

[35]  N. L. Glass,et al.  Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes , 1995, Applied and environmental microbiology.

[36]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[37]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[38]  J. McDonald,et al.  Copia is transcriptionally responsive to environmental stress. , 1985, Nucleic acids research.

[39]  A. Debets,et al.  Adenine and pyrimidine genes of Aspergillus niger and evidence for a seventh linkage group , 1989, Current Genetics.

[40]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[41]  R. Berka,et al.  Cloning, characterization, and expression of two α-amylase genes from Aspergillus niger var. awamori , 1990, Current Genetics.

[42]  T. Ishikawa,et al.  Cloning of the α-Amylase cDNA of Aspergillus shirousamii and Its Expression in Saccharomyces cerevisiae , 1992 .

[43]  K. H. Wolfe,et al.  Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi , 2008, Genome Biology.

[44]  J. Frisvad,et al.  (1016-1018) Proposal for Nomina Specifica Conservanda and Rejicienda in Aspergillus and Penicillium (Fungi) , 1992 .

[45]  F. Kempken,et al.  Strain-specific retrotransposon-mediated recombination in commercially used Aspergillus niger strain , 2008, Molecular Genetics and Genomics.

[46]  H. Driguez,et al.  Measurement of amyloglucosidase using P -nitrophenyl -maltoside as substrate , 1991 .

[47]  R. J. Cole,et al.  Orlandin: a nontoxic fungal metabolite with plant growth inhibiting properties. , 1979, Journal of agricultural and food chemistry.

[48]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[49]  A. Debets,et al.  Genetic analysis of Aspergillus niger: Isolation of chlorate resistance mutants, their use in mitotic mapping and evidence for an eighth linkage group , 1990, Molecular and General Genetics MGG.

[50]  J. Frisvad,et al.  Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins , 2007, Studies in mycology.

[51]  Barbara L. Billington,et al.  Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription , 1990, Cell.

[52]  Kristian Fog Nielsen,et al.  Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. , 2003, Journal of chromatography. A.

[53]  J. Frisvad,et al.  Fumonisin B2 production by Aspergillus niger. , 2007, Journal of agricultural and food chemistry.

[54]  R. Durbin,et al.  Using GeneWise in the Drosophila annotation experiment. , 2000, Genome research.

[55]  S. Ōmura,et al.  Tensidols, New Potentiators of Antifungal Miconazole Activity, Produced by Aspergillus niger FKI-2342 , 2006, The Journal of Antibiotics.

[56]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[57]  Yves Van de Peer,et al.  TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment , 1994, Comput. Appl. Biosci..

[58]  Jay D Keasling,et al.  Developing Aspergillus as a host for heterologous expression. , 2009, Biotechnology advances.

[59]  T. Ishikawa,et al.  Cloning of the alpha-amylase cDNA of Aspergillus shirousamii and its expression in Saccharomyces cerevisiae. , 1992, Bioscience, biotechnology, and biochemistry.

[60]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[61]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[62]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[63]  K. H. Wolfe,et al.  Elusive Origins of the Extra Genes in Aspergillus oryzae , 2008, PloS one.

[64]  J. A. Roubos,et al.  Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger , 2007, Molecular Genetics and Genomics.

[65]  S. Baker Aspergillus niger genomics: past, present and into the future. , 2006, Medical mycology.

[66]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[67]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[68]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..