Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models?

[1]  J. Marshall,et al.  Sources of Variation in the Stable Isotopic Composition of Plants , 2008 .

[2]  S. Hamilton,et al.  Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica , 2005 .

[3]  S. Carpenter,et al.  Controls of δ13C‐DIC in lakes: Geochemistry, lake metabolism, and morphometry , 2004 .

[4]  J. Finlay Patterns and controls of lotic algal stable carbon isotope ratios , 2004 .

[5]  S. Carpenter,et al.  Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs , 2004, Nature.

[6]  R. Pel,et al.  Using the hidden isotopic heterogeneity in phyto‐ and zooplankton to unmask disparity in trophic carbon transfer , 2003 .

[7]  S. Carpenter,et al.  Lake metabolism: Relationships with dissolved organic carbon and phosphorus , 2003 .

[8]  D. O. Hessen,et al.  Phytoplankton contribution to sestonic mass and elemental ratios in lakes: Implications for zooplankton nutrition , 2003 .

[9]  M. Jansson,et al.  Control of zooplankton dependence on allochthonous organic carbon in humic and clear‐water lakes in northern Sweden , 2003 .

[10]  S. Carpenter,et al.  Pathways of organic carbon utilization in small lakes: Results from a whole‐lake 13C addition and coupled model , 2002 .

[11]  U. Riebesell,et al.  Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton , 1999 .

[12]  D. Hodell,et al.  Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state , 1999 .

[13]  U. Riebesell,et al.  Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availability , 1999 .

[14]  M. Power,et al.  Effects of water velocity on algal carbon isotope ratios: Implications for river food web studies , 1999 .

[15]  F. Morel,et al.  A model of carbon isotopic fractionation and active carbon uptake in phytoplankton , 1999 .

[16]  P. Meyers,et al.  Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates , 1999 .

[17]  Peter S. Maitland,et al.  The trophic cascade in lakes , 1998 .

[18]  Robert R. Bidigare,et al.  Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum , 1997 .

[19]  T. Yoshioka,et al.  Phytoplanktonic carbon isotope fractionation: equations accounting for CO2-concentrating mechanisms , 1997 .

[20]  P. Giorgio Ecosystem‐specific patterns in the relationship between zooplankton and POM or microplankton del13C , 1996 .

[21]  D. Hodell,et al.  Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie , 1995 .

[22]  R. Michener,et al.  Stable isotopes in ecology and environmental science , 1995 .

[23]  Stephen A. Macko,et al.  Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2)aq: Theoretical considerations and experimental results , 1995 .

[24]  G. Kling,et al.  Carbon Dioxide Supersaturation in the Surface Waters of Lakes , 1994, Science.

[25]  I. Berman‐Frank,et al.  Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret , 1994 .

[26]  R. Goericke,et al.  Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean , 1994 .

[27]  R. Goericke,et al.  Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean , 1993 .

[28]  D. Hollander,et al.  CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer , 1991 .

[29]  R. Bidigare,et al.  ISOLATION AND PURIFICATION OF CHLOROPHYLLS A AND B FOR THE DETERMINATION OF STABLE CARBON AND NITROGEN ISOTOPE COMPOSITIONS , 1991 .

[30]  D. D. Marais,et al.  Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans , 1989, Nature.

[31]  W. G. Mook,et al.  CARBON ISOTOPE FRACTIONATION BETWEEN DISSOLVED BICARBONATE AND GASEOUS CARBON-DIOXIDE , 1974 .

[32]  J. Raven EXOGENOUS INORGANIC CARBON SOURCES IN PLANT PHOTOSYNTHESIS , 1970 .

[33]  J. Cole,et al.  Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilized lake , 2006 .

[34]  U. Riebesell,et al.  Stable carbon isotope fractionation by marine phytoplankton in response to daylength , growth rate , and CO 2 availability , 2006 .

[35]  F. Chavez,et al.  Plankton variations in Monterey Bay, California: evidence of non-diffusive inorganic carbon uptake by phytoplankton in an upwelling environment , 2001 .

[36]  K. L. Hanson,et al.  Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation , 1998 .

[37]  Robert R. Bidigare,et al.  Effect of growth rate and CO 2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum , 1998 .

[38]  P. Falkowski Species variability in the fractionation of 13C and 12C by marine phytoplankton , 1991 .

[39]  S. R. Carpenter,et al.  Regulation of Pigment Sedimentation by Photo-Oxidation and Herbivore Grazing , 1990 .

[40]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[41]  E. Deevey,et al.  Carbon 13 in lake waters, and its possible bearing on palaeolimnology , 1960 .