Effects of Residual Solvent Molecules Facilitating the Infiltration Synthesis of ZnO in a Nonreactive Polymer

Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnO infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the inf...

[1]  G. Frey,et al.  Mechanism of Metal Oxide Deposition from Atomic Layer Deposition inside Nonreactive Polymer Matrices: Effects of Polymer Crystallinity and Temperature , 2016 .

[2]  M. Knez,et al.  Tuning the Tensile Strength of Cellulose through Vapor-Phase Metalation , 2015 .

[3]  P. Walsh,et al.  Asymmetric addition of alkylzinc reagents to cyclic alpha,beta-unsaturated ketones and a tandem enantioselective addition/diastereoselective epoxidation with dioxygen. , 2003, Journal of the American Chemical Society.

[4]  C. Black,et al.  Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates , 2015 .

[5]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[6]  Halil I. Akyildiz,et al.  Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers , 2015 .

[7]  S. Darling,et al.  Advanced oil sorbents using sequential infiltration synthesis , 2017 .

[8]  A. Boisen,et al.  Processing of thin SU-8 films , 2008 .

[9]  Halil I. Akyildiz,et al.  Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  Pedro Barquinha,et al.  Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors , 2010 .

[11]  R. Nyquist Infrared Studies of Ketones: Parameters Affecting the Induced Carbonyl Stretching Vibration by Solute/Solvent Interaction , 1990 .

[12]  Leonidas E. Ocola,et al.  Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis , 2011 .

[13]  Jae‐Hyun Kim,et al.  In situ Raman spectroscopic study of Al-infiltrated spider dragline silk under tensile deformation. , 2014, ACS applied materials & interfaces.

[14]  S. Darling,et al.  Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers , 2010, Advanced materials.

[15]  W. Klunk,et al.  Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones. , 1982, Molecular pharmacology.

[16]  B. Carré,et al.  Thermal analysis of γ-butyrolactone + 1 butyl-3-methyl-imidazolium ionic liquids mixtures , 2005 .

[17]  Craig D. Needham,et al.  Temperature-dependent reaction between trimethylaluminum and poly(methyl methacrylate) during sequential vapor infiltration: experimental and ab initio analysis , 2014 .

[18]  Marijan Maček,et al.  The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor , 2009 .

[19]  Leonidas E. Ocola,et al.  Photoluminescence of sequential infiltration synthesized ZnO nanostructures , 2016, SPIE OPTO.

[20]  S. Darling,et al.  Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness. , 2017, ACS nano.

[21]  Halil I. Akyildiz,et al.  Photoluminescence Mechanism and Photocatalytic Activity of Organic-Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[22]  Xudong Wang,et al.  Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development , 2016 .

[23]  Katsuhiko Ariga,et al.  Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications , 2013 .

[24]  Shuichi Takayama,et al.  Rapid Prototyping of Microstructures with Bell‐Shaped Cross‐Sections and Its Application to Deformation‐Based Microfluidic Valves , 2004 .

[25]  J. Jur,et al.  Systematic study of trimethyl aluminum infiltration in polyethylene terephthalate and its effect on the mechanical properties of polyethylene terephthalate fibers , 2015 .

[26]  K. Maruoka,et al.  Lewis acid-promoted selective rearrangement of trisubstituted epoxides to aldehydes or ketones , 1994 .

[27]  Mato Knez,et al.  Greatly Increased Toughness of Infiltrated Spider Silk , 2009, Science.

[28]  Seth B Darling,et al.  A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. , 2011, ACS nano.

[29]  Thierry Buffeteau,et al.  Polarization Modulation FT-IR Spectroscopy of Surfaces and Ultra-Thin Films: Experimental Procedure and Quantitative Analysis , 1991 .

[30]  Seth B. Darling,et al.  New Insight into the Mechanism of Sequential Infiltration Synthesis from Infrared Spectroscopy , 2014 .

[31]  M. Picci,et al.  Catalysis of the epoxy-carboxyl reaction , 2002 .

[32]  C. Nam,et al.  Direct fabrication of high aspect-ratio metal oxide nanopatterns via sequential infiltration synthesis in lithographically defined SU-8 templates , 2015 .

[33]  Tandra Ghoshal,et al.  Strategies for Inorganic Incorporation using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application , 2016, Advanced materials.

[34]  Brian L. Frey,et al.  Polarization-Modulation Approaches to Reflection–Absorption Spectroscopy , 2006 .

[35]  David S. Germack,et al.  Chemically enhancing block copolymers for block-selective synthesis of self-assembled metal oxide nanostructures. , 2013, ACS nano.

[36]  D. Lenoble,et al.  Investigating Sequential Vapor Infiltration Synthesis on Block-Copolymer-Templated Titania Nanoarrays , 2016 .

[37]  Halil I. Akyildiz,et al.  Organometallic exposure dependence on organic–inorganic hybrid material formation in polyethylene terephthalate and polyamide 6 polymer fibers , 2015 .

[38]  R. Raghunathan,et al.  A greener approach for the synthesis of 1-N-methyl-(spiro[2.3′]oxindolespiro[3.2″]/spiro[2.3′]indan-1,3-dionespiro[2.2″])cyclopentanone-4-aryl pyrrolidines , 2007 .

[39]  Shaoqin Gong,et al.  Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development , 2015, Advanced materials.

[40]  R. Feng,et al.  Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings , 2002 .

[41]  J. Jur,et al.  Sequential Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape Replication and Controlled Porosity of Microporous/Mesoporous Oxide Monoliths , 2011 .

[42]  Peter J. Krommenhoek,et al.  Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[43]  M. Saeb,et al.  Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review , 2013, TheScientificWorldJournal.

[44]  S. Darling,et al.  Kinetics for the Sequential Infiltration Synthesis of Alumina in Poly(methyl methacrylate): An Infrared Spectroscopic Study , 2015 .

[45]  C. Malek SU8 resist for low-cost X-ray patterning of high-resolution, high-aspect-ratio MEMS , 2002 .

[46]  G. Parsons,et al.  Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition , 2012 .

[47]  Goran S. Nikolic,et al.  Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts , 2010, Sensors.

[48]  A. Ghorbal,et al.  Structural anisotropy in friction‐deposited layers of polystyrene , 2006 .

[49]  J Alexander Liddle,et al.  New Insights into Sequential Infiltration Synthesis. , 2015, ECS transactions.

[50]  M. Foss,et al.  Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D. , 2008, Colloids and surfaces. B, Biointerfaces.

[51]  F. Severcan,et al.  Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride , 2013 .

[52]  K. Maruoka,et al.  Selective Rearrangement of Trisubstituted Epoxides to Aldehydes or Ketones , 1991 .

[53]  H. Lobo,et al.  Handbook of Plastics Analysis , 2003 .

[54]  Daniel Lincot,et al.  Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry , 2000 .

[55]  D. Evans Stereoselective organic reactions: catalysts for carbonyl addition processes. , 1988, Science.

[56]  Halil I. Akyildiz,et al.  Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers , 2014 .

[57]  S. George,et al.  Molecular Layer Deposition of Hybrid Organic‐Inorganic Polymer Films using Diethylzinc and Ethylene Glycol , 2009 .

[58]  T. Pustelny,et al.  Application of SU8 Polymer in Waveguide Interferometer Ammonia Sensor , 2006 .

[59]  Xiaoqiang Sun,et al.  Thermal UV treatment on SU-8 polymer for integrated optics , 2014 .