Regular partitions of gentle graphs

Szemerédi's Regularity Lemma is a very useful tool of extremal combinatorics. Recently, several refinements of this seminal result were obtained for special, more structured classes of graphs. We survey these results in their rich combinatorial context. In particular, we stress the link to the theory of (structural) sparsity, which leads to alternative proofs, refinements and solutions of open problems. It is interesting to note that many of these classes present challenging problems. Nevertheless, from the point of view of regularity lemma type statements, they appear as ``gentle'' classes.

[1]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[2]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[3]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[4]  Robert Ganian,et al.  When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.

[5]  Pierre Simon,et al.  Distal and non-distal NIP theories , 2011, Ann. Pure Appl. Log..

[6]  Sergei Starchenko,et al.  Regularity lemma for distal structures , 2015, Journal of the European Mathematical Society.

[7]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[8]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[9]  V. Giakoumakis,et al.  Bi-complement Reducible Graphs , 1997 .

[10]  Robert Ganian,et al.  Shrub-depth: Capturing Height of Dense Graphs , 2017, Log. Methods Comput. Sci..

[11]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[12]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[13]  BENJAMIN OYE,et al.  STABLE GRAPHS , 2017 .

[14]  Ben Green,et al.  An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications , 2010, 1002.2028.

[15]  Michal Pilipczuk,et al.  On the number of types in sparse graphs , 2017, LICS.

[16]  Alan M. Frieze,et al.  The regularity lemma and approximation schemes for dense problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[17]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[18]  Saharon Shelah,et al.  Second-order quantifiers and the complexity of theories , 1985, Notre Dame J. Formal Log..

[19]  Michal Pilipczuk,et al.  On low rank-width colorings , 2017, WG.

[20]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[21]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[22]  Terence Tao Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..

[23]  S. Shelah CLASSIFICATION THEORY FOR ELEMENTARY CLASSES WITH THE DEPENDENCE PROPERTY-A MODEST BEGINNING , 2004 .

[24]  Peter John Anderson Tree-decomposable theories , 1990 .

[25]  Jaroslav Nesetril,et al.  On Low Tree-Depth Decompositions , 2014, Graphs Comb..

[26]  János Pach,et al.  Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension , 2019, Discret. Comput. Geom..

[27]  Daniela Kühn,et al.  Every Graph of Sufficiently Large Average Degree Contains a C4-Free Subgraph of Large Average Degree , 2004, Comb..

[28]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[29]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[30]  M. Murty Ramanujan Graphs , 1965 .

[31]  B. Reed,et al.  Recent advances in algorithms and combinatorics , 2003 .

[32]  Hunter Chase,et al.  Model Theory and Machine Learning , 2019, Bull. Symb. Log..

[33]  Gabor Elek,et al.  Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard Approach , 2007, 0705.2179.

[34]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[35]  Alex D. Scott,et al.  Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.

[36]  Daniela Kühn,et al.  Induced Subdivisions In Ks,s-Free Graphs of Large Average Degree , 2004, Comb..

[37]  Pavel Pudlák,et al.  A Note on Boolean Dimension of Posets , 1989 .

[38]  Pierre Simon A Note on "Regularity lemma for distal structures" , 2015 .

[39]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[40]  Zdenek Dvorak,et al.  Induced subdivisions and bounded expansion , 2017, Eur. J. Comb..

[41]  P. D. Mendez,et al.  1-Subdivisions, the Fractional Chromatic Number and the Hall Ratio , 2018, Combinatorica.

[42]  László Lovász,et al.  On a product dimension of graphs , 1980, J. Comb. Theory, Ser. B.

[43]  Pierre Simon,et al.  Externally definable sets and dependent pairs II , 2012, 1202.2650.

[44]  Jaroslav Nesetril,et al.  Linear rankwidth meets stability , 2019, SODA.

[45]  Jaroslav Nesetril,et al.  Strongly polynomial sequences as interpretations , 2014, J. Appl. Log..

[46]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[47]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[48]  János Pach,et al.  Density and regularity theorems for semi-algebraic hypergraphs , 2015, SODA.

[49]  Stephan Kreutzer,et al.  First-Order Interpretations of Bounded Expansion Classes , 2018, ICALP.

[50]  Maria Chudnovsky,et al.  Vertex-minors and the Erdős-Hajnal conjecture , 2018, Discret. Math..

[51]  Sergei Starchenko,et al.  Definable Regularity Lemmas for NIP Hypergraphs , 2016, The Quarterly Journal of Mathematics.

[52]  Jaroslav Nesetril,et al.  Rankwidth meets stability , 2020, SODA.

[53]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[54]  James Cummings,et al.  Limits, Regularity and Removal for Finite Structures , 2014, 1412.8084.

[55]  Pierre Simon,et al.  A Guide to NIP Theories , 2012, 1208.3944.

[56]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[57]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[58]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[59]  Sebastian Siebertz,et al.  On low rank-width colorings , 2020, Eur. J. Comb..

[60]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[61]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[62]  János Pach,et al.  A Polynomial Regularity Lemma for Semialgebraic Hypergraphs and Its Applications in Geometry and Property Testing , 2015, SIAM J. Comput..

[63]  Noga Alon,et al.  Efficient Testing of Bipartite Graphs for Forbidden Induced Subgraphs , 2007, SIAM J. Comput..

[64]  Jacob Fox,et al.  A tight lower bound for Szemerédi’s regularity lemma , 2017, Comb..

[65]  J. Pach,et al.  Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .

[66]  A. Pillay,et al.  Remarks on Tao's algebraic regularity lemma , 2013, 1310.7538.

[67]  Noga Alon,et al.  The structure of almost all graphs in a hereditary property , 2009, J. Comb. Theory B.

[68]  Jaroslav Nesetril,et al.  On Locally Presented Posets , 1990, Theor. Comput. Sci..

[69]  S. Shelah,et al.  Regularity lemmas for stable graphs , 2011, 1102.3904.

[70]  Terence Tao,et al.  Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets , 2012, Contributions Discret. Math..

[71]  Cameron E. Freer,et al.  Stable regularity for relational structures , 2017, 1712.09305.

[72]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[73]  Hans Adler,et al.  Interpreting nowhere dense graph classes as a classical notion of model theory , 2014, Eur. J. Comb..

[74]  B. Szegedy,et al.  Regularity Partitions and The Topology of Graphons , 2010, 1002.4377.

[75]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[76]  Thomas Colcombet,et al.  A Combinatorial Theorem for Trees , 2007, ICALP.