Computational algebraic geometry and global analysis of regional manipulators

The global analysis of the singularities of regional manipulators is addressed in this paper. The problem is approached from the point of view of computational algebraic geometry. The main novelty is to compute the syzygy module of the differential of the constraint map. Composing this with the differential of the forward kinematic map and studying the associated Fitting ideals allows for a complete stratification of the configuration space according to the corank of singularities. Moreover using this idea we can also compute the boundary of the image of the forward kinematic map. Obviously this gives us also a description of the image itself, i.e. the manipulator workspace. The approach is feasible in practice because generators of syzygy modules can be computed in a similar way as Grobner bases of ideals.

[1]  M. Husty An algorithm for solving the direct kinematics of general Stewart-Gough platforms , 1996 .

[2]  J. Hauenstein,et al.  Mechanism mobility and a local dimension test , 2011 .

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[4]  Klaus Hulek,et al.  Elementary Algebraic Geometry , 2003 .

[5]  Jukka Tuomela,et al.  Kinematical analysis of Wunderlich mechanism , 2013 .

[6]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[7]  Andreas Müller,et al.  Kinematical analysis of overconstrained and underconstrained mechanisms by means of computational algebraic geometry , 2013, Meccanica.

[8]  Manfred L. Husty,et al.  Algebraic methods in mechanism analysis and synthesis , 2007, Robotica.

[9]  Andreas Müller,et al.  Singularities of Regional Manipulators Revisited , 2010 .

[10]  Marco Ceccarelli,et al.  Workspace Topologies of Industrial 3R Manipulators , 2007 .

[11]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[12]  B. Roth,et al.  Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators , 1995 .

[13]  Jukka Tuomela,et al.  Kinematic analysis of Bricard’s mechanism , 2009 .

[14]  K. Abdel-Malek,et al.  Workspace boundaries of serial manipulators using manifold stratification , 2006 .

[15]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[16]  Christoph Lossen,et al.  Computing in Algebraic Geometry: A Quick Start using SINGULAR , 2006 .

[17]  Andreas Müller,et al.  On the Manifold Property of the Set of Singularities of Kinematic Mappings: Genericity Conditions , 2012 .

[18]  Jukka Tuomela,et al.  Analysing singularities of a benchmark problem , 2006, math/0611075.

[19]  S. Piipponen,et al.  Algebraic analysis of kinematics of multibody systems , 2013 .

[20]  E. Ottaviano,et al.  A Study on Workspace Topologies of 3R Industrial-Type Manipulators , 2006, 2006 IEEE International Conference on Automation, Quality and Testing, Robotics.

[21]  Damien Chablat,et al.  An Exhaustive Study of the Workspaces Tolopogies of all 3R Orthogonal Manipulators with Geometric Simplifications , 2006, ArXiv.

[22]  Dinesh K. Pai,et al.  Genericity and singularities of robot manipulators , 1992, IEEE Trans. Robotics Autom..

[23]  Samuli Piipponen,et al.  Singularity analysis of planar linkages , 2009 .

[24]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[25]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[26]  Andrew J. Sommese,et al.  Algebraic C*-actions and the inverse kinematics of a general 6R manipulator , 2010, Appl. Math. Comput..

[27]  Pekka Kekäläinen,et al.  An Invitation to Algebraic Geometry , 2000 .