Enzyme-responsive supramolecular polymers by complexation of bis(p-sulfonatocalixarenes) with suberyl dicholine-based pseudorotaxane.

A linear supramolecular ternary polymer was fabricated by iteratively threading cyclodextrin with suberyl dicholine and end-capping with bis-calixarenes, showing desired cholinesterase response.

[1]  H. Tian,et al.  Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4]arene) and pseudorotaxane. , 2013, Journal of the American Chemical Society.

[2]  Feihe Huang,et al.  A water-soluble, shape-persistent, mouldable supramolecular polymer with redox-responsiveness in the presence of a molecular chaperone , 2013 .

[3]  Feihe Huang,et al.  A novel pH-responsive supramolecular polymer constructed by pillar[5]arene-based host–guest interactions , 2013 .

[4]  Xiao‐Yu Hu,et al.  Novel pillar[5]arene-based dynamic polyrotaxanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif. , 2012, Organic letters.

[5]  Xi Zhang,et al.  Characterization of supramolecular polymers. , 2012, Chemical Society reviews.

[6]  Jinming Hu,et al.  Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. , 2012, Chemical Society reviews.

[7]  Yu Liu,et al.  Calixarene-based supramolecular polymerization in solution. , 2012, Chemical Society reviews.

[8]  Feihe Huang,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[9]  Feihe Huang,et al.  Self-healing supramolecular gels formed by crown ether based host-guest interactions. , 2012, Angewandte Chemie.

[10]  Yu Liu,et al.  Cholinesterase-responsive supramolecular vesicle. , 2012, Journal of the American Chemical Society.

[11]  Dong-Sheng Guo,et al.  Cucurbituril-modulated supramolecular assemblies: from cyclic oligomers to linear polymers. , 2012, Chemistry.

[12]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[13]  Toshiaki Ikeda,et al.  Supramolecular polymerization triggered by molecular recognition between bisporphyrin and trinitrofluorenone. , 2012, Angewandte Chemie.

[14]  Xia Ding,et al.  A Multiresponsive, Shape‐Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self‐Assembly , 2012, Advanced materials.

[15]  Y. Cohen,et al.  Anion-assisted supramolecular polymerization: from achiral AB-type monomers to chiral assemblies. , 2011, Angewandte Chemie.

[16]  Yu Liu,et al.  Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions , 2011 .

[17]  Feihe Huang,et al.  Supramolecular AA-BB-type linear polymers with relatively high molecular weights via the self-assembly of bis(m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative. , 2011, Journal of the American Chemical Society.

[18]  Xi Zhang,et al.  An enzyme-responsive polymeric superamphiphile. , 2010, Angewandte Chemie.

[19]  Xi Zhang,et al.  Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. , 2010, Angewandte Chemie.

[20]  L. Zakharov,et al.  Self‐assembly of daisy chain oligomers from heteroditopic molecules containing secondary ammonium ion and crown ether moieties , 2010 .

[21]  Feihe Huang,et al.  Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. , 2010, Angewandte Chemie.

[22]  Malar A. Azagarsamy,et al.  Enzyme-triggered disassembly of dendrimer-based amphiphilic nanocontainers. , 2009, Journal of the American Chemical Society.

[23]  Deqing Zhang,et al.  Convenient and continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission. , 2009, Analytical chemistry.

[24]  Y. Cohen,et al.  Self-assembly dynamics of modular homoditopic bis-calix[5]arenes and long-chain alpha,omega-alkanediyldiammonium components. , 2008, The Journal of organic chemistry.

[25]  Yu Liu,et al.  Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution , 2008 .

[26]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[27]  Y. Takashima,et al.  External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. , 2007, Journal of the American Chemical Society.

[28]  Y. Takashima,et al.  A chemical-responsive supramolecular hydrogel from modified cyclodextrins. , 2007, Angewandte Chemie.

[29]  Feihe Huang,et al.  Formation of a Linear Supramolecular Polymer by Self-Assembly of Two Homoditopic Monomers Based on the Bis(m-phenylene)-32-crown-10/Paraquat Recognition Motif , 2007 .

[30]  Yu Liu,et al.  Cyclodextrin-driven movement of cucurbit[7]uril. , 2007, The Journal of organic chemistry.

[31]  Rein V. Ulijn,et al.  Enzyme-responsive materials: a new class of smart biomaterials , 2006 .

[32]  Y. Takashima,et al.  Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrin−β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimers , 2006 .

[33]  Masao Kawai,et al.  Sequential formation of a ternary complex among dihexylammonium, cucurbit[6]uril, and cyclodextrin with positive cooperativity. , 2006, Organic letters.

[34]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[35]  Yan-Li Zhao,et al.  The construction of a supramolecular polymeric rotaxane from bipyridine-ruthenium and cyclodextrin. , 2005, Chemical communications.

[36]  H. Yamaguchi,et al.  A [2]rotaxane capped by a cyclodextrin and a guest: formation of supramolecular [2]rotaxane polymer. , 2005, Journal of the American Chemical Society.

[37]  Feihe Huang,et al.  Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. , 2004, Journal of the American Chemical Society.

[38]  Elena E. Dormidontova,et al.  Ring−Chain Equilibrium in Reversibly Associated Polymer Solutions: Monte Carlo Simulations , 2004 .

[39]  E. W. Meijer,et al.  Conformational control in the cyclization of hydrogen-bonded supramolecular polymers. , 2004, Journal of the American Chemical Society.

[40]  Yu Liu,et al.  Polymeric rotaxane constructed from the inclusion complex of beta-cyclodextrin and 4,4'-dipyridine by coordination with nickel(II) ions. , 2003, Angewandte Chemie.

[41]  H. Gibson,et al.  Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules. , 2003, Journal of the American Chemical Society.

[42]  M. Antonietti,et al.  From Cyclodextrin Assemblies to Porous Materials by Silica Templating , 2001 .

[43]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[44]  H. Gibson,et al.  Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties , 1999 .

[45]  H. Gibson,et al.  Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. , 1998, Angewandte Chemie.

[46]  S. Shinkai,et al.  Reinvestigation of Calixarene-Based Artificial-Signaling Acetylcholine Receptors Useful in Neutral Aqueous (Water/Methanol) Solution , 1996 .

[47]  M. Weck,et al.  Main-chain supramolecular block copolymers. , 2011, Chemical Society reviews.

[48]  S. Rowan,et al.  Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. , 2011, Nature materials.