Identifying functional thermodynamics in autonomous Maxwellian ratchets

We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of Thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly---for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  S. Brereton Life , 1876, The Indian medical gazette.

[3]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[4]  L. Brillouin Life, thermodynamics, and cybernetics. , 1949, American scientist.

[5]  Jaroslav Kožešnk,et al.  Information Theory, Statistical Decision Functions, Random Processes , 1962 .

[6]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[7]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[8]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[9]  Editors , 1986, Brain Research Bulletin.

[10]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[13]  Evans,et al.  Equilibrium microstates which generate second law violating steady states. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Cohen,et al.  Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.

[15]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[16]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[17]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[18]  Jorge Kurchan,et al.  Fluctuation theorem for stochastic dynamics , 1998 .

[19]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[20]  J. R. Dorfman,et al.  An Introduction to Chaos in Nonequilibrium Statistical Mechanics: Transport coefficients and chaos , 1999 .

[21]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[22]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[23]  R. Podgornik Book Review: An Introduction to Chaos in Nonequilibrium Statistical Mechanics Cambridge. J. R. Dorfman, Cambridge Lecture Notes in Physics 14, Cambridge University 1999 , 2001 .

[24]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[25]  James Odell,et al.  Between order and chaos , 2011, Nature Physics.

[26]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[27]  Francisco J Cao,et al.  Feedback control in a collective flashing ratchet. , 2004, Physical review letters.

[28]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[29]  O. Penrose Foundations of Statistical Mechanics: A Deductive Treatment , 2005 .

[30]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[31]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[32]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[33]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  M. Ponmurugan Generalized detailed fluctuation theorem under nonequilibrium feedback control. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[36]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[37]  James P. Crutchfield,et al.  Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation , 2010, Chaos.

[38]  Holger Kantz,et al.  Thermodynamic cost of measurements. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[40]  Tsachy Weissman,et al.  Entropy of Hidden Markov Processes and Connections to Dynamical Systems: Papers from the Banff International Research Station Workshop , 2011 .

[41]  Modeling Maxwell's demon with a microcanonical Szilard engine. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[43]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[44]  Laszlo B. Kish,et al.  Energy requirement of control: Comments on Szilard's engine and Maxwell's demon , 2012 .

[45]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[46]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[47]  Anupam Kundu Nonequilibrium fluctuation theorem for systems under discrete and continuous feedback control. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Gernot Schaller,et al.  Stochastic thermodynamics for “Maxwell demon” feedbacks , 2012, 1204.5671.

[49]  Udo Seifert,et al.  Thermodynamics of genuine nonequilibrium states under feedback control. , 2011, Physical review letters.

[50]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[51]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013, 1302.3089.

[52]  Sosuke Ito,et al.  Information thermodynamics on causal networks. , 2013, Physical review letters.

[53]  Jordan M Horowitz,et al.  Imitating chemical motors with optimal information motors. , 2012, Physical review letters.

[54]  Gernot Schaller,et al.  Thermodynamics of a physical model implementing a Maxwell demon. , 2012, Physical review letters.

[55]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[56]  Henrik Sandberg,et al.  Second-law-like inequalities with information and their interpretations , 2014, 1409.5351.

[57]  Jordan M. Horowitz,et al.  Thermodynamics with Continuous Information Flow , 2014, 1402.3276.

[58]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[59]  Andreas Engel,et al.  On the energetics of information exchange , 2014, 1401.2270.

[60]  Andre C. Barato,et al.  Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation , 2014 .

[61]  Udo Seifert,et al.  Stochastic thermodynamics with information reservoirs. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Zhiyue Lu,et al.  Engineering Maxwell's demon , 2014 .

[63]  James P. Crutchfield,et al.  Computational Mechanics of Input-Output Processes: Structured transformations and the ε-transducer , 2014, ArXiv.

[64]  James P. Crutchfield,et al.  Computational Mechanics of Input–Output Processes: Structured Transformations and the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \ , 2014, Journal of Statistical Physics.

[65]  Neri Merhav,et al.  Sequence complexity and work extraction , 2015, ArXiv.

[66]  Gernot Schaller,et al.  Thermodynamics of stochastic Turing machines , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Chulan Kwon,et al.  Total cost of operating an information engine , 2015, 1501.03733.

[68]  A. Miyake,et al.  How an autonomous quantum Maxwell demon can harness correlated information. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  James P. Crutchfield,et al.  Memoryless Thermodynamics? A Reply , 2015, ArXiv.

[70]  J. Horowitz Multipartite information flow for multiple Maxwell demons , 2015, 1501.05549.

[71]  A. B. Boyd,et al.  Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.

[72]  How can an autonomous quantum Maxwell demon harness correlated information , 2016 .