New hybrid conjugate gradient method for unconstrained optimization

In this paper, we propose a new hybrid conjugate gradient method for solving unconstrained optimization problems. The proposed method can be viewed as a convex combination of Liu-Storey method and Dai-Yuan method. An remarkable property is that the search direction of this method not only satisfies the famous D-L conjugacy condition, but also accords with the Newton direction with suitable condition. Furthermore, this property is not dependent on any line searches. Under the strong Wolfe line searches, the global convergence of the proposed method is established. Preliminary numerical results also show that our method is robust and effective.

[1]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[2]  D. Touati-Ahmed,et al.  Efficient hybrid conjugate gradient techniques , 1990 .

[3]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[4]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[5]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[6]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[7]  Ya-Xiang Yuan,et al.  A Subspace Study on Conjugate Gradient Algorithms , 1995 .

[8]  C. Storey,et al.  Global convergence result for conjugate gradient methods , 1991 .

[9]  Neculai Andrei,et al.  An Unconstrained Optimization Test Functions Collection , 2008 .

[10]  Boris Polyak The conjugate gradient method in extreme problems , 2015 .

[11]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[12]  N. Andrei Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization , 2009 .

[13]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[14]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[15]  Y. -H. Dai,et al.  New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .

[16]  Neculai Andrei,et al.  Another hybrid conjugate gradient algorithm for unconstrained optimization , 2008, Numerical Algorithms.

[17]  Neculai Andrei,et al.  Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization , 2010, Numerical Algorithms.

[18]  C. Storey,et al.  Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .

[19]  Ya-Xiang Yuan,et al.  An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization , 2001, Ann. Oper. Res..

[20]  R. Fletcher Practical Methods of Optimization , 1988 .

[21]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .