Experimenting with Power Default Reasoning

In this paper we explore the computational aspects of Propositional Power Default Reasoning (PDR), a form of non-monotonic reasoning in which the underlying logic is Kleene's 3-valued propositional logic. PDR leads to a concise meaning of the problem of skeptical entailment which has better complexity characteristics than the usual formalisms (co-NP(3)-Complete instead of ?2P-Complete). We take advantage of this in an implementation called powdef to encode and solve hard graph problems and explore randomly generated instances of skeptical entailment.

[1]  Guo-Qiang Zhang,et al.  Complexity of power default reasoning , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[2]  Hector J. Levesque,et al.  Hard problems for simple default logics , 1992 .

[3]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[4]  Marco Schaerf,et al.  A Survey of Complexity Results for Nonmonotonic Logics , 1993, J. Log. Program..

[5]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[6]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[7]  Victor W. Marek,et al.  Default Reasoning System DeReS , 1996, KR.

[8]  Victor W. Marek,et al.  Experimenting with Nonmonotonic Reasoning , 1995, ICLP.

[9]  Ilkka Niemelä,et al.  Smodels - An Implementation of the Stable Model and Well-Founded Semantics for Normal LP , 1997, LPNMR.

[10]  J. Freeman Improvements to propositional satisfiability search algorithms , 1995 .

[11]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[12]  Matthew L. Ginsberg The Computational Value of Nonmonotonic Reasoning , 1991, KR.

[13]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[14]  Carl A. Gunter,et al.  Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[15]  Leonid Libkin,et al.  Aspects of partial information in databases , 1995 .

[16]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[17]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[18]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[19]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[20]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .