Characterizations and algorithms for generalized Cops and Robbers games

We propose a definition of generalized Cops and Robbers games where there are two players, the Pursuer and the Evader, who each move via prescribed rules. If the Pursuer can ensure that the gameenters into a fixed set of final positions, then the Pursuer wins; otherwise, the Evader wins. A relational characterization of the games where the Pursuer wins is provided. A precise formula isgiven for the length of the game, along with an algorithm for computing if the Pursuer has a winning strategy whose complexity is a function of the parameters of the game. For games where theposition of one player does not affect the available moves of he other, a vertex elimination ordering characterization, analogous to a cop-win ordering, is given for when the Pursuer has a winningstrategy.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Daniel W. Cranston,et al.  Revolutionaries and spies: Spy-good and spy-bad graphs , 2012, Theor. Comput. Sci..

[3]  Peter Winkler,et al.  Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..

[4]  Bill Kinnersley,et al.  Cops and Robbers is EXPTIME-complete , 2013, J. Comb. Theory, Ser. B.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Anthony Bonato What is... Cop number , 2012 .

[7]  Nicolas Nisse,et al.  Cop and Robber Games When the Robber Can Hide and Ride , 2011, SIAM J. Discret. Math..

[8]  Richard J. Nowakowski,et al.  A Tandem version of the Cops and Robber Game played on products of graphs , 2005, Discuss. Math. Graph Theory.

[9]  Richard J. Nowakowski,et al.  Seepage in directed acyclic graphs , 2009, Australas. J Comb..

[10]  Richard J. Nowakowski,et al.  A Vertex-To-Vertex Pursuit Game Played with Disjoint Sets of Edges , 1993 .

[11]  Gary MacGillivray,et al.  A note on k-cop, l-robber games on graphs , 2006, Discret. Math..

[12]  Thomas H. Parker,et al.  What is π , 1991 .

[13]  Anthony Bonato,et al.  Cops and Robbers from a distance , 2010, Theor. Comput. Sci..

[14]  A. Bonato,et al.  Meyniel’s conjecture on the cop number: A survey , 2013, 1308.3385.

[15]  Gary MacGillivray,et al.  Characterizations of k-copwin graphs , 2012, Discret. Math..

[16]  Alissa R. Ackerman,et al.  Catch Me If You Can , 2014, Sexual abuse : a journal of research and treatment.

[17]  Nicolas Nisse,et al.  Nondeterministic Graph Searching: From Pathwidth to Treewidth , 2007, Algorithmica.

[18]  Martin Aigner,et al.  A game of cops and robbers , 1984, Discret. Appl. Math..

[19]  Edward M. Reingold,et al.  The Complexity of Pursuit on a Graph , 1995, Theor. Comput. Sci..

[20]  Gary MacGillivray,et al.  AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 43 (2009), Pages 57–77 The Firefighter Problem: A survey of results, directions and questions , 2022 .

[21]  B. Intrigila,et al.  On the Cop Number of a Graph , 1993 .

[22]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[23]  Richard J. Nowakowski,et al.  Cops, Robber and traps. , 2001 .

[24]  Dieter Mitsche,et al.  Revolutionaries and Spies on Random Graphs , 2013, Comb. Probab. Comput..

[25]  Anthony Bonato,et al.  Vertex-Pursuit in Random Directed Acyclic Graphs , 2013, SIAM J. Discret. Math..

[26]  Harold W. Kuhn,et al.  Definitions for a theory of games and pursuit , 1960 .

[27]  Richard J. Nowakowski,et al.  Tandem-win graphs , 2005, Discret. Math..

[28]  Cedric A. B. Smith Graphs and composite games , 1966 .

[29]  Anthony Bonato,et al.  The Game of Cops and Robbers on Graphs , 2011 .