Effective action for dissipative and nonholonomic systems.

We show that the action of a dynamical system can be supplemented by an effective action for its environment to reproduce arbitrary coordinate dependent ohmic dissipation and gyroscopic forces. The action is a generalization of the harmonic bath model and describes a set of massless interacting scalar fields in an auxiliary space coupled to the original system at the boundary. A certain limit of the model implements nonholonomic constraints. In the case of dynamics with nonlinearly realized symmetries the effective action takes the form of a two-dimensional nonlinear sigma-model. It provides a basis for application of path integral methods to general dissipative and nonholonomic systems.

[1]  Garrett Goon,et al.  The Schwinger-Keldysh Coset Construction , 2023, 2306.17232.

[2]  O. Fernandez Quantizing Chaplygin Hamiltonizable nonholonomic systems , 2022, Scientific Reports.

[3]  M. Rangamani,et al.  Open quantum systems and Schwinger-Keldysh holograms , 2020, Journal of High Energy Physics.

[4]  B. Cao,et al.  Diffusion Tensors of Arbitrary-Shaped Nanoparticles in Fluid by Molecular Dynamics Simulation , 2019, Scientific Reports.

[5]  Mala L. Radhakrishnan,et al.  The Quantum Mechanics of a Rolling Molecular “Nanocar” , 2018, Scientific Reports.

[6]  Paolo Glorioso,et al.  Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics , 2018, Proceedings of Theoretical Advanced Study Institute Summer School 2017 "Physics at the Fundamental Frontier" — PoS(TASI2017).

[7]  M. Buchhold,et al.  Keldysh field theory for driven open quantum systems , 2015, Reports on progress in physics. Physical Society.

[8]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2015, 1511.06994.

[9]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[10]  H. Löwen,et al.  Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Vojkan Jaksic,et al.  Field Theory of Non-Equilibrium Systems , 2012 .

[12]  M. Trodden,et al.  Galileons as Wess-Zumino terms , 2012, 1203.3191.

[13]  R. Sundrum From Fixed Points to the Fifth Dimension , 2011, 1106.4501.

[14]  Tomás Brauner,et al.  Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems , 2010, Symmetry.

[15]  A. Bloch,et al.  Quantization of a nonholonomic system. , 2008, Physical review letters.

[16]  T C Lubensky,et al.  State-dependent diffusion: Thermodynamic consistency and its path integral formulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  C. Joachim,et al.  Rolling a single molecular wheel at the atomic scale. , 2007, Nature nanotechnology.

[18]  T. Lubensky,et al.  Brownian Motion of an Ellipsoid , 2006, Science.

[19]  A. Figotin,et al.  Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems , 2006, math-ph/0608003.

[20]  M. Pasquali,et al.  Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. , 2006, Physical review letters.

[21]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[22]  Jay X. Tang,et al.  Diffusion of actin filaments within a thin layer between two walls. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[24]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[25]  U. Weiss Quantum Dissipative Systems , 1993 .

[26]  Zurek,et al.  Reduction of a wave packet in quantum Brownian motion. , 1989, Physical review. D, Particles and fields.

[27]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[28]  E. Witten Global Aspects of Current Algebra , 1983 .

[29]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[30]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[31]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[32]  B. Zumino,et al.  Consequences of anomalous ward identities , 1971 .

[33]  Julius Wess,et al.  STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS. II. , 1969 .

[34]  Marcel Abendroth,et al.  Quantum Field Theory And Critical Phenomena , 2016 .

[35]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[36]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[37]  Y. Gliklikh The Langevin Equation , 1997 .

[38]  Horace Lamb,et al.  On a Peculiarity of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium , 1900 .