Resonance wavelength in planar multilayer waveguides: control and complete suppression of temperature sensitivity

We report the possibility of realizing complete thermal stabilization of the resonance transparency wavelength λchar in a planar multilayer tilted cavity waveguide. When the positive temperature coefficient of the refractive index dn/dT is a nonlinear function of the alloy composition, which is the case in most semiconductor alloys, there exists the possibility of achieving complete control of the resonance transparency wavelength. The thermal shift dλchar/dT can be positive, zero or negative. Our result applies quite generally to optical waveguides, etalons, filters, semiconductor lasers and optical amplifiers, potentially extending the performance of the devices and their application range.

[1]  Nikolai N. Ledentsov,et al.  Wavelength-stabilized tilted cavity quantum dot laser , 2004 .

[2]  Tunable photonic crystals with semiconducting constituents , 2000 .

[3]  Phase-sensitive detection of bragg scattering at 1D optical lattices. , 2004, Physical review letters.

[4]  J. Joannopoulos,et al.  Donor and acceptor modes in photonic band structure. , 1991, Physical review letters.

[5]  E. Yablonovitch,et al.  Photonic band structure: The face-centered-cubic case. , 1989, Physical review letters.

[6]  K. Yokoyama,et al.  The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations , 1996, IEEE Photonics Technology Letters.

[7]  A. Lisyansky,et al.  Multiple-quantum-well-based photonic crystals with simple and compound elementary supercells , 2004 .

[8]  T. Kettler,et al.  High brilliance photonic band crystal lasers , 2006, Workshop on Optical Components for Broadband Communication.

[9]  Diana L. Huffaker,et al.  Temperature dependence of the transverse lasing mode in vertical‐cavity lasers , 1995 .

[10]  Henri Benisty,et al.  Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape , 2006 .

[11]  M L Povinelli,et al.  Polarization-independent linear waveguides in 3D photonic crystals. , 2003, Physical review letters.

[12]  Jimmy Xu,et al.  Merging Nanoepitaxy and Nanophotonics , 2007 .

[13]  J. E. Sipe,et al.  Coupled-mode theory for periodic side-coupled microcavity and photonic crystal structures , 2006 .

[14]  Mikhail V. Maximov,et al.  Tilted cavity laser (Critical Review Lecture) , 2004, SPIE Optics + Photonics.

[15]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[16]  J. Talghader,et al.  Erratum: ‘‘Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities’’ [Appl. Phys. Lett. 66, 335 (1995)] , 1996 .

[17]  Mikhail V. Maximov,et al.  Narrow vertical beam divergence laser diode based on longitudinal photonic band crystal waveguide , 2003 .

[18]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[19]  Galina Khitrova,et al.  Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing , 2005 .

[20]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[21]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[22]  M. Sickmiller,et al.  3D Wire mesh photonic crystals. , 1996, Physical review letters.

[23]  Romuald Houdré,et al.  Temperature tuning of the optical properties of planar photonic crystal microcavities , 2004 .

[24]  Nikolai N. Ledentsov,et al.  Novel concepts for injection lasers , 2002 .

[25]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[26]  E. Goobar,et al.  Highly efficient vertical-cavity surface-emitting lasers optimized for low-temperature operation , 1995, IEEE Photonics Technology Letters.

[27]  Joseph J. Talghader,et al.  Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities , 1995 .

[28]  A. De Luca,et al.  Color-tunable organic microcavity laser array using distributed feedback. , 2005, Physical review letters.

[29]  Mikhail V. Maximov,et al.  High power GaInP/AlGaInP visible lasers (λ = 646 nm) with narrow circular shaped far-field pattern , 2005 .

[30]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[31]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .