Edge computing: current trends, research challenges and future directions

The edge computing (EC) paradigm brings computation and storage to the edge of the network where data is both consumed and produced. This variation is necessary to cope with the increasing amount of network-connected devices and data transmitted, that the launch of the new 5G networks will expand. The aim is to avoid the high latency and traffic bottlenecks associated with the use of Cloud Computing in networks where several devices both access and generate high volumes of data. EC also improves network support for mobility, security, and privacy. This paper provides a discussion around EC and summarized the definition and fundamental properties of the EC architectures proposed in the literature (Multi-access Edge Computing, Fog Computing, Cloudlet Computing, and Mobile Cloud Computing). Subsequently, this paper examines significant use cases for each EC architecture and debates some promising future research directions.

[1]  Anjali Chandavale,et al.  Medical knowledge extraction scheme for cloudlet-based healthcare system to avoid malicious attacks , 2019 .

[2]  Elarbi Badidi,et al.  QoS-Aware Placement of Tasks on a Fog Cluster in an Edge Computing Environment , 2020, J. Ubiquitous Syst. Pervasive Networks.

[3]  Rajkumar Buyya,et al.  Fog computing in 5G networks: an application perspective , 2017 .

[4]  Hubertus Feussner,et al.  Enabling Real-Time Context-Aware Collaboration through 5G and Mobile Edge Computing , 2015, 2015 12th International Conference on Information Technology - New Generations.

[5]  Guoming Tang,et al.  A Survey on Edge Computing Systems and Tools , 2019, Proceedings of the IEEE.

[6]  Mahmoud Al-Ayyoub,et al.  The future of mobile cloud computing: Integrating cloudlets and Mobile Edge Computing , 2016, 2016 23rd International Conference on Telecommunications (ICT).

[7]  M. Shamim Hossain,et al.  Cloudlet-Based Intelligent Auctioning Agents for Truthful Autonomous Electric Vehicles Energy Crowdsourcing , 2020, IEEE Transactions on Vehicular Technology.

[8]  Weisong Shi,et al.  The Promise of Edge Computing , 2016, Computer.

[9]  Rajkumar Buyya,et al.  Fog Computing: A Taxonomy, Survey and Future Directions , 2016, Internet of Everything.

[10]  Ing-Ray Chen,et al.  A Survey of Mobile Cloud Computing Applications: Perspectives and Challenges , 2015, Wirel. Pers. Commun..

[11]  Sergio Barbarossa,et al.  Communicating While Computing: Distributed mobile cloud computing over 5G heterogeneous networks , 2014, IEEE Signal Processing Magazine.

[12]  Joan Manuel Marquès,et al.  Towards the Decentralised Cloud , 2019, ACM Comput. Surv..

[13]  Parmeet Kaur,et al.  Efficient Computation Offloading in Mobile Cloud Computing with Nature-Inspired Algorithms , 2019, Int. J. Comput. Intell. Appl..

[14]  Jaehak Yu,et al.  WISE: web of object architecture on IoT environment for smart home and building energy management , 2016, The Journal of Supercomputing.

[15]  Asrar Ab,et al.  Fog Computing for Network Slicing in 5G Networks: An Overview , 2018 .

[16]  Sherali Zeadally,et al.  Fog Computing Architecture, Evaluation, and Future Research Directions , 2018, IEEE Communications Magazine.

[17]  Nirwan Ansari,et al.  Convergence of Networking and Cloud/Edge Computing: Status, Challenges, and Opportunities , 2020, IEEE Network.

[18]  Xing Zhang,et al.  A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications , 2017, IEEE Access.

[19]  Dmitry Namiot,et al.  On Mobile Cloud for Smart City Applications , 2016, ArXiv.

[20]  Long Chen,et al.  QUICK: QoS-guaranteed efficient cloudlet placement in wireless metropolitan area networks , 2018, The Journal of Supercomputing.

[21]  Jie Zhang,et al.  Hybrid computation offloading for smart home automation in mobile cloud computing , 2018, Personal and Ubiquitous Computing.

[22]  Amir Masoud Rahmani,et al.  Fog Computing Applications in Smart Cities: A Systematic Survey , 2019, Wireless Networks.

[23]  Jacques Demerjian,et al.  Evaluation of mobile cloud architectures , 2017, Pervasive Mob. Comput..

[24]  Blesson Varghese,et al.  Resource Management in Fog/Edge Computing , 2018, ACM Comput. Surv..

[25]  Sungjoo Kang,et al.  Multi-Access Edge Computing based Simulation Offloading for 5G Mobile Application (poster) , 2019, MobiSys.

[26]  Marwa Ayad,et al.  Real-Time Mobile Cloud Computing: A Case Study in Face Recognition , 2014, 2014 28th International Conference on Advanced Information Networking and Applications Workshops.

[27]  Bing Chen,et al.  Data Security and Privacy-Preserving in Edge Computing Paradigm: Survey and Open Issues , 2018, IEEE Access.

[28]  William E. Weihl,et al.  Edgecomputing: extending enterprise applications to the edge of the internet , 2004, WWW Alt. '04.

[29]  Zhang Yao-xue,et al.  Transparence Computing:Concept,Architecture and Example , 2004 .

[30]  Houbing Song,et al.  Cloudlet-Based Mobile Cloud Computing for Healthcare Applications , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[31]  Miguel Angel Ferrer-Ballester,et al.  A Perspective Analysis of Handwritten Signature Technology , 2019, ACM Comput. Surv..

[32]  Osman Ghazali,et al.  Fog Computing: Will it be the Future of Cloud Computing? , 2014 .

[33]  Nirwan Ansari,et al.  Latency Aware Workload Offloading in the Cloudlet Network , 2017, IEEE Communications Letters.

[34]  David De Roure,et al.  A Grid Service Infrastructure for Mobile Devices , 2005, 2005 First International Conference on Semantics, Knowledge and Grid.

[35]  Shouyi Yang,et al.  Markov decision process-based computation offloading algorithm and resource allocation in time constraint for mobile cloud computing , 2020, IET Commun..

[36]  Roch H. Glitho,et al.  A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges , 2017, IEEE Communications Surveys & Tutorials.

[37]  Sangtae Ha,et al.  Clarifying Fog Computing and Networking: 10 Questions and Answers , 2017, IEEE Communications Magazine.

[38]  Sandip Chakraborty,et al.  A Survey of Fog Computing and Communication: Current Researches and Future Directions , 2018, ArXiv.

[39]  Seng Wai Loke,et al.  Computing with Nearby Mobile Devices: A Work Sharing Algorithm for Mobile Edge-Clouds , 2019, IEEE Transactions on Cloud Computing.

[40]  Roger Zimmermann,et al.  Dynamic Urban Surveillance Video Stream Processing Using Fog Computing , 2016, 2016 IEEE Second International Conference on Multimedia Big Data (BigMM).

[41]  Junhao Wen,et al.  Convergence of Recommender Systems and Edge Computing: A Comprehensive Survey , 2020, IEEE Access.

[42]  Andrea Vinci,et al.  Smart Agents and Fog Computing for Smart City Applications , 2016, Smart-CT.

[43]  Sungjoo Kang,et al.  Multiaccess Edge Computing-Based Simulation as a Service for 5G Mobile Applications: A Case Study of Tollgate Selection for Autonomous Vehicles , 2020, Wirel. Commun. Mob. Comput..

[44]  Yan Zhang,et al.  Mobile Edge Computing: A Survey , 2018, IEEE Internet of Things Journal.

[45]  George Pavlou,et al.  Seamless Support of Low Latency Mobile Applications with NFV-Enabled Mobile Edge-Cloud , 2016, 2016 5th IEEE International Conference on Cloud Networking (Cloudnet).

[46]  Jason P. Jue,et al.  All One Needs to Know about Fog Computing and Related Edge Computing Paradigms , 2019 .

[47]  Max Mühlhäuser,et al.  A Multi-Cloudlet Infrastructure for Future Smart Cities: An Empirical Study , 2018, EdgeSys@MobiSys.

[48]  Ioannis Psaras,et al.  Information-Centric Mobile Edge Computing for Connected Vehicle Environments: Challenges and Research Directions , 2017, MECOMM@SIGCOMM.

[49]  Atay Ozgovde,et al.  EdgeCloudSim: An environment for performance evaluation of Edge Computing systems , 2017, 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC).

[50]  Tiago M. Fernández-Caramés,et al.  A Fog Computing and Cloudlet Based Augmented Reality System for the Industry 4.0 Shipyard , 2018, Sensors.

[51]  Amrit Lal Sangal,et al.  Analysis of cloudlet completion time during attack on smart grid cloud , 2016, Int. J. Cloud Comput..

[52]  Tasos Dagiuklas,et al.  Multi-access edge computing: open issues, challenges and future perspectives , 2017, Journal of Cloud Computing.

[53]  Muhammad Abdullah Adnan,et al.  SMARTLET: A Dynamic Architecture for Real Time Face Recognition in Smartphone Using Cloudlets and Cloud , 2019, Big Data Res..

[54]  Kok-Lim Alvin Yau,et al.  Edge Computing in 5G: A Review , 2019, IEEE Access.

[55]  Paul Wood,et al.  Dependability in edge computing , 2017, Commun. ACM.

[56]  Lifeng Sun,et al.  A Survey of Cloudlet Based Mobile Computing , 2015, 2015 International Conference on Cloud Computing and Big Data (CCBD).

[57]  J. Wenny Rahayu,et al.  Mobile cloud computing: A survey , 2013, Future Gener. Comput. Syst..

[58]  Laurence T. Yang,et al.  Heterogeneous edge computing open platforms and tools for internet of things , 2020, Future Gener. Comput. Syst..

[59]  Dusit Niyato,et al.  Offloading in Mobile Cloudlet Systems with Intermittent Connectivity , 2015, IEEE Transactions on Mobile Computing.

[60]  Ruixuan Li,et al.  Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0 , 2020, IEEE Internet of Things Journal.

[61]  Toni Janevski,et al.  5G and the Fog — Survey of related technologies and research directions , 2016, 2016 18th Mediterranean Electrotechnical Conference (MELECON).

[62]  Luis Rodero-Merino,et al.  Finding your Way in the Fog: Towards a Comprehensive Definition of Fog Computing , 2014, CCRV.

[63]  Rodrigo Roman,et al.  Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security Threats and Challenges , 2016, Future Gener. Comput. Syst..

[64]  Tie Qiu,et al.  Survey on fog computing: architecture, key technologies, applications and open issues , 2017, J. Netw. Comput. Appl..

[65]  BagchiSaurabh,et al.  Dependability in edge computing , 2019 .

[66]  Mahadev Satyanarayanan,et al.  Scalable crowd-sourcing of video from mobile devices , 2013, MobiSys '13.

[67]  Xin Zhou,et al.  Toward Computation Offloading in Edge Computing: A Survey , 2019, IEEE Access.

[68]  Weifa Liang,et al.  QoS-Aware Task Offloading in Distributed Cloudlets with Virtual Network Function Services , 2017, MSWiM.

[69]  Zdenek Becvar,et al.  Mobile Edge Computing: A Survey on Architecture and Computation Offloading , 2017, IEEE Communications Surveys & Tutorials.

[70]  Anuja Gade,et al.  Medical knowledge extraction scheme for cloudlet-based healthcare system to avoid malicious attacks , 2019, Int. J. Cloud Comput..

[71]  Sateesh Addepalli,et al.  Fog computing and its role in the internet of things , 2012, MCC '12.

[72]  Jakub Dolezal,et al.  Performance evaluation of computation offloading from mobile device to the edge of mobile network , 2016, 2016 IEEE Conference on Standards for Communications and Networking (CSCN).

[73]  Teruo Higashino,et al.  Edge-centric Computing: Vision and Challenges , 2015, CCRV.

[74]  Hai Jin,et al.  Using Crowdsourcing to Provide QoS for Mobile Cloud Computing , 2019, IEEE Transactions on Cloud Computing.

[75]  Sudeep Tanwar,et al.  Blockchain for Industry 4.0: A Comprehensive Review , 2020, IEEE Access.

[76]  Manoj Muniswamaiah,et al.  Mobile Cloud Computing in Healthcare Using Dynamic Cloudlets for Energy-Aware Consumption , 2019, ArXiv.

[77]  Ejaz Ahmed,et al.  A survey on mobile edge computing , 2016, 2016 10th International Conference on Intelligent Systems and Control (ISCO).

[78]  Tarik Taleb,et al.  On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration , 2017, IEEE Communications Surveys & Tutorials.

[79]  Guoliang Xue,et al.  An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications , 2017, 2017 IEEE International Conference on Edge Computing (EDGE).

[80]  Shashikala Tapaswi,et al.  New cloud offloading algorithm for better energy consumption and process time , 2017, Int. J. Syst. Assur. Eng. Manag..

[81]  Mahadev Satyanarayanan,et al.  The Emergence of Edge Computing , 2017, Computer.

[82]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[83]  Jeffrey H. Reed,et al.  Wireless distributed computing: a survey of research challenges , 2012, IEEE Communications Magazine.

[84]  Yi Pan,et al.  Cloud-dew architecture : realizing the potential of distributed database systems in unreliable networks , 2015 .

[85]  Yuguang Fang,et al.  Offloading Optimization and Bottleneck Analysis for Mobile Cloud Computing , 2019, IEEE Transactions on Communications.

[86]  Dario Sabella,et al.  Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things , 2016, IEEE Consumer Electronics Magazine.

[87]  Anwesha Mukherjee,et al.  Power and Delay Efficient Multilevel Offloading Strategies for Mobile Cloud Computing , 2020, Wirel. Pers. Commun..

[88]  Ke Zhang,et al.  Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm with Predictive Off-Loading , 2017, IEEE Veh. Technol. Mag..

[89]  Sherali Zeadally,et al.  Mobile cloud computing: Challenges and future research directions , 2018, J. Netw. Comput. Appl..

[90]  Rajkumar Buyya,et al.  HealthFog: An Ensemble Deep Learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in Integrated IoT and Fog Computing Environments , 2019, Future Gener. Comput. Syst..

[91]  Prem Prakash Jayaraman,et al.  Fog Computing: Survey of Trends, Architectures, Requirements, and Research Directions , 2018, IEEE Access.

[92]  Marco Aurélio Gerosa,et al.  Service-oriented middleware for the Future Internet: state of the art and research directions , 2011, Journal of Internet Services and Applications.

[93]  Dario Pompili,et al.  Collaborative Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and Challenges , 2016, IEEE Communications Magazine.

[94]  Ju Ren,et al.  A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms , 2019, ACM Comput. Surv..

[95]  Chin-Teng Lin,et al.  Edge of Things: The Big Picture on the Integration of Edge, IoT and the Cloud in a Distributed Computing Environment , 2018, IEEE Access.

[96]  Manas Kumar Yogi,et al.  Mist Computing: Principles, Trends and Future Direction , 2017, ArXiv.

[97]  Atay Ozgovde,et al.  How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use Cases, and Future Directions , 2017, IEEE Communications Surveys & Tutorials.

[98]  Athanasios V. Vasilakos,et al.  Mobile Cloud Computing: A Survey, State of Art and Future Directions , 2013, Mobile Networks and Applications.

[99]  John Krogstie,et al.  F2c2C-DM: A Fog-to-cloudlet-to-Cloud Data Management Architecture in Smart City , 2019, 2019 IEEE 5th World Forum on Internet of Things (WF-IoT).

[100]  Michael Till Beck,et al.  Mobile Edge Computing: A Taxonomy , 2014 .

[101]  Yoshiaki Fukazawa,et al.  Real-time Resources Allocation Framework for Multi-Task Offloading in Mobile Cloud Computing , 2019, 2019 International Conference on Computer, Information and Telecommunication Systems (CITS).

[102]  Debashis De,et al.  Edge computing for Internet of Things: A survey, e-healthcare case study and future direction , 2019, J. Netw. Comput. Appl..

[103]  Max Mühlhäuser,et al.  What the Fog? Edge Computing Revisited: Promises, Applications and Future Challenges , 2019, IEEE Access.

[104]  Prashant M. Ambad,et al.  Industry 4.0 – A Glimpse , 2018 .

[105]  Qun Li,et al.  A Survey of Fog Computing: Concepts, Applications and Issues , 2015, Mobidata@MobiHoc.

[106]  Guangjie Han,et al.  SSL: Smart Street Lamp Based on Fog Computing for Smarter Cities , 2018, IEEE Transactions on Industrial Informatics.

[107]  Ricardo S. Alonso,et al.  Edge Computing Architectures in Industry 4.0: A General Survey and Comparison , 2019, SOCO.

[108]  Albert Y. Zomaya,et al.  IoTSim‐Edge: A simulation framework for modeling the behavior of Internet of Things and edge computing environments , 2020, Softw. Pract. Exp..

[109]  Xi Zheng,et al.  Crowdsourcing Mechanism for Trust Evaluation in CPCS Based on Intelligent Mobile Edge Computing , 2019, ACM Trans. Intell. Syst. Technol..

[110]  Wazir Zada Khan,et al.  Edge computing: A survey , 2019, Future Gener. Comput. Syst..

[111]  Yogesh L. Simmhan,et al.  Demystifying Fog Computing: Characterizing Architectures, Applications and Abstractions , 2017, 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC).

[112]  Samee Ullah Khan,et al.  Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers , 2018, Comput. Networks.

[113]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[114]  Tao Zhang,et al.  Fog and IoT: An Overview of Research Opportunities , 2016, IEEE Internet of Things Journal.

[115]  Chonho Lee,et al.  A survey of mobile cloud computing: architecture, applications, and approaches , 2013, Wirel. Commun. Mob. Comput..

[116]  Bechir Hamdaoui,et al.  Cloudlet-Aware Mobile Content Delivery in Wireless Urban Communication Networks , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[117]  Péter Kiss,et al.  Deployment of IoT applications on 5G edge , 2018, 2018 IEEE International Conference on Future IoT Technologies (Future IoT).

[118]  Jiang Zhu,et al.  Fog Computing: A Platform for Internet of Things and Analytics , 2014, Big Data and Internet of Things.

[119]  Ivan Stojmenovic,et al.  The Fog computing paradigm: Scenarios and security issues , 2014, 2014 Federated Conference on Computer Science and Information Systems.

[120]  Jiwei Huang,et al.  A Simulation-Based Optimization Approach for Reliability-Aware Service Composition in Edge Computing , 2020, IEEE Access.

[121]  Jing Wang,et al.  Edge-Oriented Computing Paradigms , 2018, ACM Comput. Surv..

[122]  Weihua Zhuang,et al.  Emerging Technologies, Applications, and Standardizations for Connecting Vehicles (Part II) [From the Guest Editor] , 2015 .

[123]  Daniele Tarchi,et al.  A Unified Urban Mobile Cloud Computing Offloading Mechanism for Smart Cities , 2017, IEEE Communications Magazine.

[124]  Rajkumar Buyya,et al.  Fog Computing: Principles, Architectures, and Applications , 2016, ArXiv.

[125]  Rosangela de Fatima Pereira,et al.  Fog computing: Data analytics and cloud distributed processing on the network edges , 2016, 2016 35th International Conference of the Chilean Computer Science Society (SCCC).

[126]  Bruno Cabral,et al.  A Case for Machine Learning in Edge-Oriented Computing to Enhance Mobility as a Service , 2019, 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS).

[127]  Schahram Dustdar,et al.  A Serverless Real-Time Data Analytics Platform for Edge Computing , 2017, IEEE Internet Computing.