Nanomanipulation with the Atomic Force Microscope

Manipulation with scanning probe microscopes has been under development for over a decade, and now provides the capability of building nanostructures automatically, from the bottom up, by assembling nanoscale objects such as particles, rods, and tubes. In this chapter, the current research on nanomanipulation is surveyed, with special emphasis placed on techniques that use the atomic force microscope (AFM) as a robot, the nanoscopic end-effector of which – the tip – interacts directly with the nanoscale features of the sample. The principles of operation of the AFM, and the spatial uncertainties associated with it, are briefly described. Protocols for moving nano-objects with the AFM tip are discussed, and experimental results presented which show that AFM manipulation can be used to accurately and reliably position molecular-sized components. These can then be linked by chemical or physical means to form subassemblies, which in turn can be further manipulated. Interactive AFM manipulation systems are discussed, as well as recent results on automated nanomanipulation. Keywords: nanoassembly; nanomanipulation; nanorobotics; atomic force microscopy; scanning probe microscopy; nanoparticle structures

[1]  D. Rugar,et al.  Atomic emission from a gold scanning-tunneling-microscope tip. , 1990, Physical review letters.

[2]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[3]  Michael T. Postek,et al.  Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air , 1990 .

[4]  P. Avouris,et al.  Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM , 1991, Science.

[5]  D. Eigler,et al.  Atomic and Molecular Manipulation with the Scanning Tunneling Microscope , 1991, Science.

[6]  Hironaga Uchida,et al.  Single-atom manipulation on the Si(111)7 × 7 surface by the scanning tunneling microscope (STM) , 1993 .

[7]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[8]  Toshiro Isu,et al.  Threshold height for movement of C60 molecules on Si(111)‐7×7 with a scanning tunneling microscope , 1993 .

[9]  M. Lagally,et al.  Fabrication of Atomic-Scale Structures on Si(001) Surfaces , 1994, Science.

[10]  J. Villarrubia Morphological estimation of tip geometry for scanned probe microscopy , 1994 .

[11]  Ronald P. Andres,et al.  Fabrication of two‐dimensional arrays of nanometer‐size clusters with the atomic force microscope , 1995 .

[12]  Philip Moriarty,et al.  Manipulation of C60 molecules on a Si surface , 1995 .

[13]  L. Samuelson,et al.  Controlled manipulation of nanoparticles with an atomic force microscope , 1995 .

[14]  E. S. Snow,et al.  AFM Fabrication of Sub-10-Nanometer Metal-Oxide Devices with in Situ Control of Electrical Properties , 1995, Science.

[15]  Christian Joachim,et al.  Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion , 1996, Science.

[16]  James K. Gimzewski,et al.  Room‐temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device , 1996 .

[17]  Tomomasa Sato,et al.  Mechanical assembly of three-dimensional microstructures from fine particles , 1996, Adv. Robotics.

[18]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[19]  Charles M. Lieber,et al.  Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy , 1996, Science.

[20]  Aristides A. G. Requicha,et al.  Robotic nanomanipulation with a scanning probe microscope in a networked computing environment , 1997 .

[21]  Gerd Meyer,et al.  BASIC STEPS OF LATERAL MANIPULATION OF SINGLE ATOMS AND DIATOMIC CLUSTERS WITH A SCANNING TUNNELING MICROSCOPE TIP , 1997 .

[22]  K. Koga,et al.  Fabrication of size-controlled 10-nm scale Si pillars using metal clusters as formation nuclei , 1998 .

[23]  C Bechinger,et al.  From mesoscopic to nanoscopic surface structures: lithography with colloid monolayers. , 1998, Advanced materials.

[24]  Lars Montelius,et al.  Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope , 1998 .

[25]  B. Schleicher,et al.  Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy , 1998 .

[26]  Alejandro Bugacov,et al.  Building and Manipulating Three-Dimensional and Linked Two-Dimensional Structures of Nanoparticles Using Scanning Force Microscopy , 1998 .

[27]  J. Bohr,et al.  A technique for positioning nanoparticles using an atomic force microscope , 1998 .

[28]  Aristides A. G. Requicha,et al.  Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring , 1998 .

[29]  A. Madhukar,et al.  Manipulation of nanoparticles using dynamic force microscopy: simulation and experiments , 1998 .

[30]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[31]  H. Ahmed,et al.  Patterning of silicon nanopillars formed with a colloidal gold etch mask , 1999 .

[32]  Aristides A. G. Requicha,et al.  Linking and Manipulation of Gold Multinanoparticle Structures Using Dithiols and Scanning Force Microscopy , 1999 .

[33]  Aristides A. G. Requicha,et al.  Massively Parallel Nanorobotics for Lithography and Data Storage , 1999, Int. J. Robotics Res..

[34]  Jari Penttilä,et al.  Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation , 1999 .

[35]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[36]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[37]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[38]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[39]  García,et al.  Amplitude curves and operating regimes in dynamic atomic force microscopy , 2000, Ultramicroscopy.

[40]  W. G. Matthews,et al.  Controlled manipulation of molecular samples with the nanoManipulator , 2000 .

[41]  Jiwen Zheng,et al.  Atomic Force Microscopy-Based Nanolithography on Silicon Using Colloidal Au Nanoparticles As a Nanooxidation Mask , 2000 .

[42]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[43]  Madhukar,et al.  Manipulation of gold nanoparticles in liquid environments using scanning force microscopy , 2000, Ultramicroscopy.

[44]  Anupam Madhukar,et al.  Immobilizing Au Nanoparticles on SiO 2 Surfaces Using Octadecylsiloxane Monolayers , 2001 .

[45]  J. E. Hudson,et al.  Lithographic Applications of Redox Probe Microscopy , 2001 .

[46]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[47]  A. Stemmer,et al.  Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip , 2001 .

[48]  Aristides A. G. Requicha,et al.  Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates , 2001 .

[49]  Shuqing Sun,et al.  Generation of Nanostructures by Scanning Near-Field Photolithography of Self-Assembled Monolayers and Wet Chemical Etching , 2002 .

[50]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[51]  Aristides A. G. Requicha,et al.  Imaging and manipulation of gold nanorods with an atomic force microscope , 2002 .

[52]  Martyn C. Davies,et al.  Comparison of calibration methods for atomic-force microscopy cantilevers , 2002 .

[53]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[54]  Thierry Baron,et al.  Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication , 2003 .

[55]  G. Abadal,et al.  AFM lithography of aluminum for fabrication of nanomechanical systems. , 2003, Ultramicroscopy.

[56]  Seiji Takeda,et al.  Lithographing of Biomolecules on a Substrate Surface Using an Enzyme-Immobilized AFM Tip , 2003 .

[57]  Nabil A. Amro,et al.  Precise Positioning of Nanoparticles on Surfaces Using Scanning Probe Lithography , 2003 .

[58]  E. Meyer,et al.  Scanning Probe Microscopy , 2021, Graduate Texts in Physics.

[59]  Ning Xi,et al.  Development of augmented reality system for AFM-based nanomanipulation , 2004 .

[60]  Ulrich S Schubert,et al.  Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. , 2004, Angewandte Chemie.

[61]  Elad Harel,et al.  Fabrication of polystyrene latex nanostructures by nanomanipulation and thermal processing. , 2005, Nano letters.

[62]  Ning Xi,et al.  CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics , 2006, IEEE Trans Autom. Sci. Eng..

[63]  J. Crain,et al.  Electronically Induced Atom Motion in Engineered CoCun Nanostructures , 2006, Science.

[64]  Aristides A. G. Requicha,et al.  Drift compensation for automatic nanomanipulation with scanning probe microscopes , 2006, IEEE Transactions on Automation Science and Engineering.