InsP3R–RyR Ca2+ channel crosstalk facilitates arrhythmias in the failing human ventricle

[1]  E. Crampin,et al.  IP3R activity increases propensity of RyR-mediated sparks by elevating dyadic [Ca2+]. , 2022, Mathematical biosciences.

[2]  H. Roderick,et al.  Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease , 2022, Philosophical Transactions of the Royal Society B.

[3]  F. Mason,et al.  Increased cytosolic calcium buffering contributes to a cellular arrhythmogenic substrate in iPSC-cardiomyocytes from patients with dilated cardiomyopathy , 2022, Basic Research in Cardiology.

[4]  D. Bers,et al.  Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors , 2021, Basic Research in Cardiology.

[5]  P. Claus,et al.  Ventricular Arrhythmias in Ischemic Cardiomyopathy—New Avenues for Mechanism-Guided Treatment , 2021, Cells.

[6]  H. Roderick,et al.  Ca2+ release via InsP3Rs enhances RyR recruitment during Ca2+ transients by increasing dyadic [Ca2+] in cardiomyocytes. , 2021, Journal of cell science.

[7]  A. Panfilov,et al.  Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability. , 2021, The Journal of clinical investigation.

[8]  P. Claus,et al.  Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies in vivo triggered activity and repolarization instability , 2020, The Journal of physiology.

[9]  Panos Vardas,et al.  European Society of Cardiology: Cardiovascular Disease Statistics 2019. , 2019, European heart journal.

[10]  H. Roderick,et al.  Calcium Signaling in Cardiomyocyte Function. , 2019, Cold Spring Harbor perspectives in biology.

[11]  I. Parker,et al.  All three IP3 receptor isoforms generate Ca2+ puffs that display similar characteristics , 2018, Science Signaling.

[12]  Daniel M. Johnson,et al.  Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium , 2018, Front. Physiol..

[13]  I. Sjaastad,et al.  Ryanodine receptor dispersion disrupts Ca2+ release in failing cardiac myocytes , 2018, eLife.

[14]  D. Bers,et al.  Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release , 2018, Journal of the American Heart Association.

[15]  P. Claus,et al.  Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons , 2018, Cardiovascular research.

[16]  Dobromir Dobrev,et al.  Calcium Signaling and Cardiac Arrhythmias. , 2017, Circulation research.

[17]  M. Egger,et al.  Functional local crosstalk of inositol 1,4,5-trisphosphate receptor- and ryanodine receptor-dependent Ca2+ release in atrial cardiomyocytes , 2017, Cardiovascular research.

[18]  D. Bers,et al.  Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. , 2015, Circulation research.

[19]  Godfrey L. Smith,et al.  Inositol‐1,4,5‐trisphosphate induced Ca2+ release and excitation–contraction coupling in atrial myocytes from normal and failing hearts , 2015, The Journal of physiology.

[20]  J. Gummert,et al.  Ca2+/calmodulin‐dependent protein kinase II equally induces sarcoplasmic reticulum Ca2+ leak in human ischaemic and dilated cardiomyopathy , 2014, European journal of heart failure.

[21]  G. Leitinger,et al.  Early Remodeling of Perinuclear Ca2+ Stores and Nucleoplasmic Ca2+ Signaling During the Development of Hypertrophy and Heart Failure , 2014, Circulation.

[22]  Dobromir Dobrev,et al.  Role of RyR2 Phosphorylation in Heart Failure and Arrhythmias: Controversies Around Ryanodine Receptor Phosphorylation in Cardiac Disease , 2014, Circulation research.

[23]  Nicole Schmitt,et al.  Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. , 2014, Physiological reviews.

[24]  N. Macquaide,et al.  Selective Modulation of Coupled Ryanodine Receptors During Microdomain Activation of Calcium/Calmodulin-Dependent Kinase II in the Dyadic Cleft , 2013, Circulation research.

[25]  R. Michler,et al.  Inositol 1, 4, 5-Trisphosphate Receptors and Human Left Ventricular Myocytes , 2013, Circulation.

[26]  S. Bryant,et al.  Do t‐tubules play a role in arrhythmogenesis in cardiac ventricular myocytes? , 2013, The Journal of physiology.

[27]  Mark E. Anderson,et al.  Mechanisms of Altered Ca2+ Handling in Heart Failure , 2013, Circulation research.

[28]  M. Egger,et al.  ‘Eventless’ InsP3‐dependent SR‐Ca2+ release affecting atrial Ca2+ sparks , 2013, The Journal of physiology.

[29]  H. Roderick,et al.  The role of the paracrine/autocrine mediator endothelin‐1 in regulation of cardiac contractility and growth , 2013, British journal of pharmacology.

[30]  R. Hajjar,et al.  Modulation of Cardiac Contractility by the Phopholamban/SERCA2a Regulatome , 2012, Circulation research.

[31]  Isuru D. Jayasinghe,et al.  Comparison of the organization of t‐tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium , 2012 .

[32]  Silvia G Priori,et al.  Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. , 2011, Circulation research.

[33]  J. Sneyd,et al.  How does the ryanodine receptor in the ventricular myocyte wake up: by a single or by multiple open L-type Ca2+ channels? , 2011, European Biophysics Journal.

[34]  D. Bers,et al.  Ca2+ spark‐dependent and ‐independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes , 2010, The Journal of physiology.

[35]  K. Mikoshiba,et al.  The IP3 Receptor Regulates Cardiac Hypertrophy in Response to Select Stimuli , 2010, Circulation research.

[36]  T. Kolettis,et al.  Do endothelin receptor antagonists have an antiarrhythmic potential during acute myocardial infarction? Evidence from experimental studies , 2010, Journal of Interventional Cardiac Electrophysiology.

[37]  Erich Wettwer,et al.  Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts , 2009, Pflügers Archiv - European Journal of Physiology.

[38]  M. Bootman,et al.  Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy , 2009, Proceedings of the National Academy of Sciences.

[39]  Julia Gorelik,et al.  Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart , 2009, Proceedings of the National Academy of Sciences.

[40]  J. Hancox,et al.  Regulation of cardiac Na+-Ca2+ exchanger activity by protein kinase phosphorylation--still a paradox? , 2009, Cell calcium.

[41]  Burkert Pieske,et al.  Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. , 2008, Journal of molecular and cellular cardiology.

[42]  S. Huke,et al.  IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. , 2008, American journal of physiology. Heart and circulatory physiology.

[43]  S. Nattel,et al.  Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. , 2007, Physiological reviews.

[44]  M. Berridge,et al.  Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes , 2006, Journal of Cell Science.

[45]  Petter Laake,et al.  T‐tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction , 2006, The Journal of physiology.

[46]  J. Narula,et al.  Role of angiotensin receptor blockers in the prevention and treatment of arrhythmias. , 2006, The American journal of cardiology.

[47]  Eric A Sobie,et al.  Orphaned ryanodine receptors in the failing heart. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Vann Bennett,et al.  Ankyrin-B Coordinates the Na/K ATPase, Na/Ca Exchanger, and InsP3 Receptor in a Cardiac T-Tubule/SR Microdomain , 2005, PLoS biology.

[49]  Z. Kubalová,et al.  Abnormal intrastore calcium signaling in chronic heart failure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Bers,et al.  Cardiac Type 2 Inositol 1,4,5-Trisphosphate Receptor , 2005, Journal of Biological Chemistry.

[51]  Willem Flameng,et al.  Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. , 2004, Cardiovascular research.

[52]  D. Bers,et al.  Cellular basis of triggered arrhythmias in heart failure. , 2004, Trends in cardiovascular medicine.

[53]  K. Sipido,et al.  Spatial and Temporal Inhomogeneities During Ca2+ Release From the Sarcoplasmic Reticulum in Pig Ventricular Myocytes , 2002, Circulation research.

[54]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[55]  Donald M. Bers,et al.  Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure , 2002, Basic Research in Cardiology.

[56]  B. Merkely,et al.  Investigating the dual nature of endothelin-1: ischemia or direct arrhythmogenic effect? , 2000, Life sciences.

[57]  G. Hasenfuss,et al.  Functional effects of endothelin and regulation of endothelin receptors in isolated human nonfailing and failing myocardium. , 1999, Circulation.

[58]  S. Lehnart,et al.  Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. , 1999, Circulation.

[59]  W. Lederer,et al.  Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. , 1997, Science.

[60]  D. Schomburg,et al.  Ca 2+ /calmodulin-dependent protein kinase , 1997 .

[61]  E. Erdmann,et al.  Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. , 1993, Circulation research.

[62]  Norbert,et al.  Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. , 1989, The Journal of biological chemistry.