Probability weighting and L-moments

Several popular generalizations of expected utility theory—cumulative prospect theory, rank-dependent utility and Yaari's dual model—allow for non-linear transformation of (de-)cumulative probabilities. This paper shows an unexpected connection between probability weighting and the statistical theory of L-moments. Specifically, cubic probability weighting results in a linear tradeoff between the expected value (the first L-moment), Gini (1912) mean difference statistic (the second L-moment, also known as L-scale) and the third L-moment (measuring skewness). Inverse S-shaped probability weighting function crossing the 45° line at a probability ≤0.5 reflects an aversion to the dispersion of outcomes and an attraction to positively skewed distributions.

[1]  Claus Schittenhelm,et al.  What is loss aversion , 2016 .

[2]  Peter P. Wakker,et al.  An index of loss aversion , 2005, J. Econ. Theory.

[3]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[4]  David E. Buschena,et al.  Generalized expected utility, heteroscedastic error, and path dependence in risky choice , 2008 .

[5]  P. Blavatskyy Which decision theory , 2013 .

[6]  D. Prelec The Probability Weighting Function , 1998 .

[7]  C. Gini Variabilità e mutabilità : contributo allo studio delle distribuzioni e delle relazioni statistiche , 1912 .

[8]  H. J. Einhorn,et al.  Expression theory and the preference reversal phenomena. , 1987 .

[9]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[10]  Mark J. Machina,et al.  Risk, Ambiguity, and the Rank-Dependence Axioms , 2009 .

[11]  S. Yitzhaki Stochastic Dominance, Mean Variance, and Gini's Mean Difference , 1982 .

[12]  Reverse Common Ratio Effect , 2010 .

[13]  Pavlo R. Blavatskyy,et al.  Probabilistic choice and stochastic dominance , 2008, Economic Theory.

[14]  N. Wilcox Stochastically more risk averse: A contextual theory of stochastic discrete choice under risk , 2011 .

[15]  C. Starmer Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk , 2000 .

[16]  P. Blavatskyy The Troika paradox , 2012 .

[17]  R. Sugden,et al.  Testing Different Stochastic Specificationsof Risky Choice , 1998 .

[18]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[19]  Enrica Carbone,et al.  A Comparison of the Estimates of EU and non-EU Preference Functionals Using Data from Pairwise Choice and Complete Ranking Experiments , 1995 .

[20]  Pavlo R. Blavatskyy,et al.  Stochastic Utility Theorem , 2007 .

[21]  R. Sugden,et al.  Third-generation prospect theory , 2008 .

[22]  K. Borch,et al.  A Note on Uncertainty and Indifference Curves , 1969 .

[23]  Adrian Bruhin Stochastic Expected Utility and Prospect Theory in a Horse Race: A Finite Mixture Approach , 2008 .

[24]  John D. Hey,et al.  Experimental Investigations of Errors in Decision Making under Risk Experimental investigations of errors in decision making under risk , 1995 .

[25]  Pavlo R. Blavatskyy,et al.  Back to the St. Petersburg Paradox? , 2005, Manag. Sci..

[26]  S. Ebert On Skewed Risks in Economic Models and Experiments , 2015 .

[27]  T. Åstebro,et al.  Skewness seeking: risk loving, optimism or overweighting of small probabilities? , 2015 .

[28]  Two examples of ambiguity aversion , 2013 .

[29]  M. Abdellaoui Parameter-Free Elicitation of Utility and Probability Weighting Functions , 2000 .

[30]  P. Delquié,et al.  Disappointment without prior expectation: a unifying perspective on decision under risk , 2006 .

[31]  P. Blavatskyy Preference Reversals and Probabilistic Choice , 2008 .

[32]  John D. Hey,et al.  Stochastic choice with deterministic preferences: An experimental investigation , 1995 .

[33]  Colin Camerer,et al.  Violations of the betweenness axiom and nonlinearity in probability , 1994 .

[34]  Reverse common ratio effect , 2010 .

[35]  R. Duncan Luce,et al.  The ongoing dialog between empirical science and measurement theory , 1996 .

[36]  Peter P. Wakker,et al.  On the Intuition of Rank-Dependent Utility , 2000 .

[37]  Pavlo R. Blavatskyy,et al.  Stronger utility , 2014 .

[38]  A. Tversky,et al.  Foundations of Measurement, Vol. I: Additive and Polynomial Representations , 1991 .

[39]  P. Wakker,et al.  Eliciting von Neumann-Morgenstern Utilities When Probabilities Are Distorted or Unknown , 1996 .

[40]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[41]  Peter P. Wakker,et al.  The algebraic versus the topological approach to additive representations , 1988 .

[42]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[43]  Michele Bernasconi Nonlinear Preferences and Two-Stage Lotteries: Theories and Evidence , 1994 .

[44]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[45]  Pavlo R. Blavatskyy,et al.  A Simple Behavioral Characterization of Subjective Expected Utility , 2013, Oper. Res..

[46]  Pavlo R. Blavatskyy,et al.  A Model of Probabilistic Choice Satisfying First-Order Stochastic Dominance , 2011, Manag. Sci..

[47]  J. Hey,et al.  A Comparison of the Estimates of Expected Utility and Non-Expected-Utility Preference Functionals , 1995 .

[48]  Shlomo Yitzhaki,et al.  Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets , 1984 .

[49]  Zvi Safra,et al.  Constant Risk Aversion , 1998 .

[50]  N. Wilcox,et al.  Decisions, Error and Heterogeneity , 1997 .

[51]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[52]  A Probabilistic Expected Utility Theory of Risky Binary Choices , 1978 .

[53]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[54]  Pavlo R. Blavatskyy,et al.  Modifying the Mean-Variance Approach to Avoid Violations of Stochastic Dominance , 2010, Manag. Sci..

[55]  J. Hey,et al.  INVESTIGATING GENERALIZATIONS OF EXPECTED UTILITY THEORY USING EXPERIMENTAL DATA , 1994, Experiments in Economics.

[56]  Pavlo R. Blavatskyy,et al.  Models of Stochastic Choice and Decision Theories: Why Both are Important for Analyzing Decisions , 2008 .

[57]  John Quiggin,et al.  Risk Perception And The Analysis Of Risk Attitudes , 1981 .

[58]  Peter P. Wakker,et al.  Preference Foundations for Nonexpected Utility: A Generalized and Simplified Technique , 2003, Math. Oper. Res..

[59]  P. Blavatskyy Preference reversals and probabilistic decisions , 2009 .

[60]  N. Wilcox Stochastic models for binary discrete choice under risk: a critical primer and econometric comparison , 2008 .