Generalization in Ball Banach Function Spaces of Brezis–Van Schaftingen–Yung Formulae with Applications to Fractional Sobolev and Gagliardo–Nirenberg Inequalities
暂无分享,去创建一个
Feng Dai | Dachun Yang | Wen Yuan | Xiaosheng Lin | Yangyang Zhang | F. Dai | Dachun Yang | Yangyang Zhang | Xiaosheng Lin | Wen Yuan
[1] Long Huang,et al. New Ball Campanato-Type Function Spaces and Their Applications , 2022, The Journal of Geometric Analysis.
[2] D. Cruz-Uribe,et al. Variable Hardy Spaces , 2012, 1211.6505.
[3] S. Roudenko,et al. Function spaces of variable smoothness and integrability , 2007, 0711.2354.
[4] L. Vega,et al. Some weighted Gagliardo-Nirenberg inequalities and applications , 2007 .
[5] Y. Sawano,et al. Hardy spaces for ball quasi-Banach function spaces , 2017 .
[6] Dachun Yang,et al. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators , 2019, Science China Mathematics.
[7] H. Triebel. Theory Of Function Spaces , 1983 .
[8] Giuseppe Mastroianni,et al. Best Approximation and Moduli of Smoothness for Doubling Weights , 2001, J. Approx. Theory.
[9] V. G. Mazʹi︠a︡,et al. Sobolev spaces : with applications to elliptic partial differential equations , 2011 .
[10] K. Ho. Erdélyi–Kober fractional integral operators on ball Banach function spaces , 2021 .
[11] K. Yabuta,et al. Calderón-Zygmund operators on amalgam spaces and in the discrete case , 2007 .
[12] Y. Sawano,et al. The Fatou Property of Block Spaces , 2014, 1404.2688.
[13] Charles B. Morrey,et al. On the solutions of quasi-linear elliptic partial differential equations , 1938 .
[14] Long Huang,et al. Dual spaces of anisotropic mixed-norm Hardy spaces , 2018, Proceedings of the American Mathematical Society.
[15] Izuki Mitsuo,et al. Characterization of BMO via ball Banach function spaces , 2017 .
[16] 中野 秀五郎,et al. Modulared semi-ordered linear spaces , 1950 .
[17] D. Cruz-Uribe,et al. Weights, Extrapolation and the Theory of Rubio de Francia , 2011 .
[18] Petru Mironescu,et al. Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .
[19] L. Hörmander,et al. Estimates for translation invariant operators inLp spaces , 1960 .
[20] K. Ho,et al. Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent , 2014 .
[21] Dachun Yang,et al. Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces , 2018, Mathematical Methods in the Applied Sciences.
[22] Long Huang,et al. Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications , 2018, The Journal of Geometric Analysis.
[23] Po-Lam Yung,et al. A new formula for the L norm , 2021 .
[24] Y. Sawano,et al. Gagliardo–Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces , 2012 .
[25] Y. Sawano,et al. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space , 2013 .
[26] Tatiana Filosofova. Da! , 2020 .
[27] Po-Lam Yung,et al. Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail , 2021 .
[28] Henggeng Wang,et al. Decomposition of Hardy–Morrey spaces , 2009 .
[29] L. Caffarelli,et al. Nonlocal minimal surfaces , 2009, 0905.1183.
[30] G. Mingione. Gradient potential estimates , 2011 .
[31] Y. Sawano,et al. Atomic Decomposition for Mixed Morrey Spaces , 2020, The Journal of Geometric Analysis.
[32] Kirill Kopotun,et al. Polynomial approximation with doubling weights having finitely many zeros and singularities , 2014, J. Approx. Theory.
[33] T. Kopaliani,et al. Gagliardo–Nirenberg type inequality for variable exponent Lebesgue spaces , 2009 .
[34] J. Bourgain,et al. Another look at Sobolev spaces , 2001 .
[35] P. Hästö,et al. Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .
[36] Long Huang,et al. On Function Spaces with Mixed Norms — A Survey , 2019, Journal of Mathematical Study.
[37] L. Grafakos. Classical Fourier Analysis , 2010 .
[38] Y. Sawano,et al. Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials , 2013 .
[39] V. Kokilashvili,et al. Weighted Inequalities in Lorentz and Orlicz Spaces , 1991 .
[40] L. Caffarelli,et al. Uniform estimates and limiting arguments for nonlocal minimal surfaces , 2011 .
[41] K. Pietruska-Pałuba,et al. Interpolation inequalities for derivatives in Orlicz spaces , 2006 .
[42] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[43] Dachun Yang,et al. Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces , 2020, Frontiers of Mathematics in China.
[44] V. H. Nguyen. Sharp weighted Sobolev and Gagliardo–Nirenberg inequalities on half‐spaces via mass transport and consequences , 2013, 1307.1363.
[45] Kenneth F. Andersen,et al. Weighted inequalities for vector-valued maximal functions and singular integrals , 1981 .
[46] M. Nielsen,et al. Discrete decomposition of homogeneous mixed-norm Besov spaces , 2017 .
[47] Dachun Yang,et al. Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces , 2019, Results in Mathematics.
[48] G Stiny,et al. Weights , 1992, The SAGE Encyclopedia of Research Design.
[49] 澤野 嘉宏. ベゾフ空間論 = Theory of Besov spaces , 2011 .
[50] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[51] K. Ho. ATOMIC DECOMPOSITION OF HARDY-MORREY SPACES WITH VARIABLE EXPONENTS , 2015 .
[52] Po-Lam Yung,et al. A new formula for the $L^p$ norm , 2021, 2102.09657.
[53] Y. Sawano,et al. The John–Nirenberg inequality in ball Banach function spaces and application to characterization of BMO , 2019, Journal of Inequalities and Applications.
[54] F. Holland. Harmonic Analysis on Amalgams of LP and lq , 1975 .
[55] Haim Brezis,et al. How to recognize constant functions. Connections with Sobolev spaces , 2002 .
[56] Wen Yuan,et al. Compactness Characterizations of Commutators on Ball Banach Function Spaces , 2021, Potential Analysis.
[57] L. Evans. Measure theory and fine properties of functions , 1992 .
[58] Ric,et al. A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure , 2008, 0807.0246.
[59] P. Hästö,et al. Maximal Operator in Variable Exponent Lebesgue Spaces on Unbounded Quasimetric Measure Spaces , 2015 .
[60] T. Nogayama. Mixed Morrey spaces , 2018, Positivity.
[61] Dachun Yang,et al. Real-variable characterizations of Orlicz-slice Hardy spaces , 2018, Analysis and Applications.
[62] Po-Lam Yung,et al. A surprising formula for Sobolev norms , 2021, Proceedings of the National Academy of Sciences.
[63] P. Auscher,et al. Representation and uniqueness for boundary value elliptic problems via first order systems , 2014, Revista Matemática Iberoamericana.
[64] C. Bennett,et al. Interpolation of operators , 1987 .
[65] D. Chang,et al. Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces , 2019, Complex Analysis and Operator Theory.
[66] Dachun Yang,et al. Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation , 2019, The Journal of Geometric Analysis.
[67] Petru Mironescu,et al. Lifting in Sobolev spaces , 2000 .
[68] Der-Chen Chang,et al. Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces* , 2021, Applicable Analysis.
[69] P. Auscher,et al. Tent space boundedness via extrapolation , 2016, 1603.01230.
[70] M. Nielsen,et al. Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces , 2016, 1608.03782.