Generalization in Ball Banach Function Spaces of Brezis–Van Schaftingen–Yung Formulae with Applications to Fractional Sobolev and Gagliardo–Nirenberg Inequalities

with the positive equivalence constants independent of f , where q ∈ (0,∞) is an index depending on the space X, and |E| denotes the Lebesgue measure of a measurable set E ⊂ R. Particularly, when X := L(R) with p ∈ [1,∞), the above estimate holds true for any given q ∈ [1, p], which when q = p is exactly the recent surprising formula of H. Brezis, J. Van Schaftingen, and P.-L. Yung, and which even when q < p is new. This generalization has a wide range of applications and, particularly, enables the authors to establish new fractional Sobolev and Gagliardo–Nirenberg inequalities in various function spaces, including Morrey spaces, mixed-norm Lebesgue spaces, variable Lebesgue spaces, weighted Lebesgue spaces, Orlicz spaces, and Orlicz-slice (generalized amalgam) spaces, and, even in all these special cases, the obtained results are new. The proofs of these results strongly depend on the Poincaré inequality, the extrapolation, the exact operator norm on X of the Hardy–Littlewood maximal operator, and the geometry of R.

[1]  Long Huang,et al.  New Ball Campanato-Type Function Spaces and Their Applications , 2022, The Journal of Geometric Analysis.

[2]  D. Cruz-Uribe,et al.  Variable Hardy Spaces , 2012, 1211.6505.

[3]  S. Roudenko,et al.  Function spaces of variable smoothness and integrability , 2007, 0711.2354.

[4]  L. Vega,et al.  Some weighted Gagliardo-Nirenberg inequalities and applications , 2007 .

[5]  Y. Sawano,et al.  Hardy spaces for ball quasi-Banach function spaces , 2017 .

[6]  Dachun Yang,et al.  Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators , 2019, Science China Mathematics.

[7]  H. Triebel Theory Of Function Spaces , 1983 .

[8]  Giuseppe Mastroianni,et al.  Best Approximation and Moduli of Smoothness for Doubling Weights , 2001, J. Approx. Theory.

[9]  V. G. Mazʹi︠a︡,et al.  Sobolev spaces : with applications to elliptic partial differential equations , 2011 .

[10]  K. Ho Erdélyi–Kober fractional integral operators on ball Banach function spaces , 2021 .

[11]  K. Yabuta,et al.  Calderón-Zygmund operators on amalgam spaces and in the discrete case , 2007 .

[12]  Y. Sawano,et al.  The Fatou Property of Block Spaces , 2014, 1404.2688.

[13]  Charles B. Morrey,et al.  On the solutions of quasi-linear elliptic partial differential equations , 1938 .

[14]  Long Huang,et al.  Dual spaces of anisotropic mixed-norm Hardy spaces , 2018, Proceedings of the American Mathematical Society.

[15]  Izuki Mitsuo,et al.  Characterization of BMO via ball Banach function spaces , 2017 .

[16]  中野 秀五郎,et al.  Modulared semi-ordered linear spaces , 1950 .

[17]  D. Cruz-Uribe,et al.  Weights, Extrapolation and the Theory of Rubio de Francia , 2011 .

[18]  Petru Mironescu,et al.  Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .

[19]  L. Hörmander,et al.  Estimates for translation invariant operators inLp spaces , 1960 .

[20]  K. Ho,et al.  Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent , 2014 .

[21]  Dachun Yang,et al.  Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces , 2018, Mathematical Methods in the Applied Sciences.

[22]  Long Huang,et al.  Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications , 2018, The Journal of Geometric Analysis.

[23]  Po-Lam Yung,et al.  A new formula for the L norm , 2021 .

[24]  Y. Sawano,et al.  Gagliardo–Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces , 2012 .

[25]  Y. Sawano,et al.  On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space , 2013 .

[26]  Tatiana Filosofova Da! , 2020 .

[27]  Po-Lam Yung,et al.  Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail , 2021 .

[28]  Henggeng Wang,et al.  Decomposition of Hardy–Morrey spaces , 2009 .

[29]  L. Caffarelli,et al.  Nonlocal minimal surfaces , 2009, 0905.1183.

[30]  G. Mingione Gradient potential estimates , 2011 .

[31]  Y. Sawano,et al.  Atomic Decomposition for Mixed Morrey Spaces , 2020, The Journal of Geometric Analysis.

[32]  Kirill Kopotun,et al.  Polynomial approximation with doubling weights having finitely many zeros and singularities , 2014, J. Approx. Theory.

[33]  T. Kopaliani,et al.  Gagliardo–Nirenberg type inequality for variable exponent Lebesgue spaces , 2009 .

[34]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[35]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[36]  Long Huang,et al.  On Function Spaces with Mixed Norms — A Survey , 2019, Journal of Mathematical Study.

[37]  L. Grafakos Classical Fourier Analysis , 2010 .

[38]  Y. Sawano,et al.  Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials , 2013 .

[39]  V. Kokilashvili,et al.  Weighted Inequalities in Lorentz and Orlicz Spaces , 1991 .

[40]  L. Caffarelli,et al.  Uniform estimates and limiting arguments for nonlocal minimal surfaces , 2011 .

[41]  K. Pietruska-Pałuba,et al.  Interpolation inequalities for derivatives in Orlicz spaces , 2006 .

[42]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[43]  Dachun Yang,et al.  Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces , 2020, Frontiers of Mathematics in China.

[44]  V. H. Nguyen Sharp weighted Sobolev and Gagliardo–Nirenberg inequalities on half‐spaces via mass transport and consequences , 2013, 1307.1363.

[45]  Kenneth F. Andersen,et al.  Weighted inequalities for vector-valued maximal functions and singular integrals , 1981 .

[46]  M. Nielsen,et al.  Discrete decomposition of homogeneous mixed-norm Besov spaces , 2017 .

[47]  Dachun Yang,et al.  Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces , 2019, Results in Mathematics.

[48]  G Stiny,et al.  Weights , 1992, The SAGE Encyclopedia of Research Design.

[49]  澤野 嘉宏 ベゾフ空間論 = Theory of Besov spaces , 2011 .

[50]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[51]  K. Ho ATOMIC DECOMPOSITION OF HARDY-MORREY SPACES WITH VARIABLE EXPONENTS , 2015 .

[52]  Po-Lam Yung,et al.  A new formula for the $L^p$ norm , 2021, 2102.09657.

[53]  Y. Sawano,et al.  The John–Nirenberg inequality in ball Banach function spaces and application to characterization of BMO , 2019, Journal of Inequalities and Applications.

[54]  F. Holland Harmonic Analysis on Amalgams of LP and lq , 1975 .

[55]  Haim Brezis,et al.  How to recognize constant functions. Connections with Sobolev spaces , 2002 .

[56]  Wen Yuan,et al.  Compactness Characterizations of Commutators on Ball Banach Function Spaces , 2021, Potential Analysis.

[57]  L. Evans Measure theory and fine properties of functions , 1992 .

[58]  Ric,et al.  A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure , 2008, 0807.0246.

[59]  P. Hästö,et al.  Maximal Operator in Variable Exponent Lebesgue Spaces on Unbounded Quasimetric Measure Spaces , 2015 .

[60]  T. Nogayama Mixed Morrey spaces , 2018, Positivity.

[61]  Dachun Yang,et al.  Real-variable characterizations of Orlicz-slice Hardy spaces , 2018, Analysis and Applications.

[62]  Po-Lam Yung,et al.  A surprising formula for Sobolev norms , 2021, Proceedings of the National Academy of Sciences.

[63]  P. Auscher,et al.  Representation and uniqueness for boundary value elliptic problems via first order systems , 2014, Revista Matemática Iberoamericana.

[64]  C. Bennett,et al.  Interpolation of operators , 1987 .

[65]  D. Chang,et al.  Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces , 2019, Complex Analysis and Operator Theory.

[66]  Dachun Yang,et al.  Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation , 2019, The Journal of Geometric Analysis.

[67]  Petru Mironescu,et al.  Lifting in Sobolev spaces , 2000 .

[68]  Der-Chen Chang,et al.  Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces* , 2021, Applicable Analysis.

[69]  P. Auscher,et al.  Tent space boundedness via extrapolation , 2016, 1603.01230.

[70]  M. Nielsen,et al.  Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces , 2016, 1608.03782.