On Landau damping
暂无分享,去创建一个
[1] D. Lynden-Bell. The Stability and Vibrations of a Gas of Stars , 1962 .
[2] K. Pfaffelmoser,et al. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .
[3] G. Backus. Linearized Plasma Oscillations in Arbitrary Electron Velocity Distributions , 1960 .
[4] N N Nekhoroshev,et al. AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .
[5] C. Chou. The Vlasov equations , 1965 .
[6] N. G. Van Kampen,et al. On the theory of stationary waves in plasmas , 1955 .
[7] D. Haar. The Transport Equation in the Case of Coulomb Interactions , 1969 .
[8] P. Gérard,et al. Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .
[9] H. Neunzert,et al. On the classical solutions of the initial value problem for the unmodified non-linear vlasov equation II special cases , 1982 .
[10] Raoul Robert,et al. Statistical Mechanics and Hydrodynamical Turbulence , 1995 .
[11] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[12] W. Braun,et al. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .
[13] J. N. Hayes. On non-Landau damped solutions to the linearized vlasov equation , 1963 .
[14] Karl-Theodor Sturm. Entropic Measure on Multidimensional Spaces , 2009, 0901.1815.
[15] J. Velázquez,et al. On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem , 2008, 0810.3456.
[16] Gerhard Rein,et al. Global classical solutions of the periodic Vlasov-Poisson system in three dimensions , 1991 .
[17] Zhiwu Lin. Nonlinear instability of periodic BGK waves for Vlasov‐Poisson system , 2005 .
[18] S. K. Trehan,et al. Plasma oscillations (I) , 1960 .
[19] Matthias Günthier,et al. On the perturbation problem associated to isometric embeddings of Riemannian manifolds , 1989 .
[20] Emanuele Caglioti,et al. Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .
[21] G. Rein. Non-linear stability for the Vlasov–Poisson system—the energy-Casimir method , 1994 .
[22] W. Gangbo,et al. Lagrangian dynamics on an infinite-dimensional torus: a Weak KAM theorem , 2010 .
[23] Pierre-Emmanuel Jabin,et al. N-particles Approximation of the Vlasov Equations with Singular Potential , 2003, math/0310039.
[24] A. Fridman,et al. Physics of Gravitating Systems II. Nonlinear Collective Processes: Nonlinear Waves, Solitons, Collisionless Shocks, Turbulence. Astrophysical Applications , 1984 .
[25] P. Jabin. Averaging Lemmas and Dispersion Estimates for kinetic equations , 2009 .
[26] Reinhard Schlickeiser,et al. Statistical Mechanics of Charged Particles , 2002 .
[27] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[28] J. M. Greene,et al. EXACT NON-LINEAR PLASMA OSCILLATIONS , 1957 .
[29] Stochastic process of equilibrium fluctuations of a system with long-range interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] P. Colestock,et al. Direct measurement of diffusion rates in high energy synchrotrons using longitudinal beam echoes. , 1996, Physical review letters.
[31] Mario Pulvirenti,et al. Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .
[32] Pierre-Henri Chavanis,et al. Statistical Mechanics of Two-Dimensional Vortices and Collisionless Stellar Systems , 1996 .
[33] Sergej B. Kuksin,et al. Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .
[34] R. Glassey,et al. The Cauchy Problem in Kinetic Theory , 1987 .
[35] A. Sznitman. Topics in propagation of chaos , 1991 .
[36] Roy W. Gould,et al. PLASMA WAVE ECHO. , 1967 .
[37] Jack Schaeffer,et al. Time decay for solutions to the linearized Vlasov equation , 1994 .
[38] P. Degond. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .
[39] Michael I. Weinstein,et al. Multichannel nonlinear scattering for nonintegrable equations , 1990 .
[40] B. Turkington. STATISTICAL EQUILIBRIUM MEASURES AND COHERENT STATES IN TWO-DIMENSIONAL TURBULENCE , 1999 .
[41] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[42] Serge Alinhac,et al. Pseudo-differential Operators and the Nash-Moser Theorem , 2007 .
[43] Pierre Raphael,et al. The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System , 2008 .
[44] J. N. Hayes. Damping of Plasma Oscillations in the Linear Theory , 1961 .
[45] Quasilinear theory of the 2D euler equation , 1999, Physical review letters.
[46] Dmitri D. Ryutov,et al. Landau damping: half a century with the great discovery , 1999 .
[47] J. Velázquez,et al. Global Existence for the Vlasov–Poisson System in Bounded Domains , 2008, 0810.3452.
[48] J. Bourgain,et al. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .
[49] Zhiwu Lin,et al. Small BGK Waves and Nonlinear Landau Damping , 2010, 1003.3005.
[50] S. Hess,et al. Landau and Non-Landau Linear Damping: Physics of the Dissipation , 2009 .
[51] A. A. Arsen’ev. Existence and uniqueness of the classical solution of vlasov's system of equations , 1975 .
[52] G. Vekstein. Landau resonance mechanism for plasma and wind-generated water waves , 1998 .
[53] J. Fröhlich,et al. Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field , 1999 .
[54] A. Akhiezer. Plasma electrodynamics - Vol.1: Linear theory; Vol.2: Non-linear theory and fluctuations , 1975 .
[55] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[56] Pierre Degond,et al. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .
[57] G. Backus. Linearized Plasma Oscillations in Arbitrary Electron Distributions , 1960 .
[58] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[59] V. Maslov,et al. THE LINEAR THEORY OF LANDAU DAMPING , 1986 .
[60] I. Kaganovich. Effects of Collisions and Particle Trapping on Collisionless Heating , 1999 .
[61] Radjesvarane Alexandre,et al. On the Landau approximation in plasma physics , 2004 .
[62] S. Tremaine,et al. H-functions and mixing in violent relaxation , 1986 .
[63] Giovanni Manfredi,et al. Long-Time Behavior of Nonlinear Landau Damping , 1997 .
[64] H. Spohn. Large Scale Dynamics of Interacting Particles , 1991 .
[65] N. A. Krall,et al. Principles of Plasma Physics , 1973 .
[66] J. Bourgain. Periodic nonlinear Schrödinger equation and invariant measures , 1994 .
[67] T. M. O'Neil,et al. The Collisionless Nature of High-Temperature Plasmas , 1999 .
[68] M. Kruskal,et al. Exact Nonlinear Plasma Oscillations , 1957 .
[69] Louis Nirenberg,et al. An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .
[70] Jerrold E. Marsden,et al. Nonlinear stability of fluid and plasma equilibria , 1985 .
[71] Microscopic Dynamics of Plasmas and Chaos , 2002 .
[72] E. Horst,et al. On the asymptotic growth of the solutions of the vlasov–poisson system , 1993 .
[73] Spatially Inhomogenous. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : The linear Fokker-Planck equation , 2004 .
[74] Michael K.-H. Kiessling,et al. The "Jeans swindle": A true story - mathematically speaking , 2003, Adv. Appl. Math..
[75] Jack Schaeffer,et al. Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .
[76] Yan Guo,et al. Nonlinear instability of double-humped equilibria , 1995 .
[77] S. Hess,et al. Existence of non-Landau solutions for Langmuir waves , 2008 .
[78] Yan Guo. Global weak solutions of the Vlasov-Maxwell system with boundary conditions , 1993 .
[79] J. Lott. Some Geometric Calculations on Wasserstein Space , 2006, math/0612562.
[80] M. Isichenko. NONLINEAR LANDAU DAMPING IN COLLISIONLESS PLASMA AND INVISCID FLUID , 1996, chao-dyn/9612021.
[81] M. Kiessling,et al. Phase transitions in gravitating systems and the formation of condensed objects , 1995 .
[82] Miller,et al. Statistical mechanics of Euler equations in two dimensions. , 1990, Physical review letters.
[83] C. Villani,et al. Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.
[84] F. Berz. On the Theory of Plasma Waves , 1956 .
[85] C. B. Wharton,et al. COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES , 1964 .
[86] M. Rosenbluth,et al. Asymptotic Theory of Nonlinear Landau Damping and Particle Trapping in Waves of Finite Amplitude , 1998 .
[87] S. Benachour. Analyticité des solutions des équations de Vlassov-Poisson , 1989 .
[88] P. H. Chavanis. Statistical Mechanics of Violent Relaxation in Stellar Systems , 2002 .
[89] H. Wiechen,et al. Relaxation of collisionless self-gravitating matter : the lowest energy state for systems with non-vanishing total angular momentum , 1988 .
[90] Jack Schaeffer,et al. On time decay rates in landau damping , 1995 .
[91] W. Gangbo,et al. Hamiltonian ODEs in the Wasserstein space of probability measures , 2008 .
[92] K. E.. VIOLENT RELAXATION, PHASE MIXING, AND GRAVITATIONAL LANDAU DAMPING , 1998 .
[93] A. W. Sáenz. Long‐Time Behavior of the Electric Potential and Stability in the Linearized Vlasov Theory , 1965 .
[94] P. Lions,et al. Global weak solutions of Vlasov‐Maxwell systems , 1989 .
[95] Yan Guo,et al. Numerical study on Landau damping , 2001 .
[96] Christian Gérard,et al. Scattering theory of classical and quantum N-particle systems , 1997 .
[97] Helmut Neunzert,et al. An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .
[98] Lev Davidovich Landau,et al. On the vibrations of the electronic plasma , 1946 .
[99] T. M. O'Neil,et al. Plasma wave echo experiment , 1968 .
[100] Takaaki Nishida,et al. A note on a theorem of Nirenberg , 1977 .
[101] H. Neunzert,et al. On the classical solutions of the initial value problem for the unmodified non‐linear Vlasov equation I general theory , 1981 .
[102] C. Villani,et al. On Landau damping , 2009, 0904.2760.
[103] A non-variational approach to nonlinear stability in stellar dynamics applied to the King model , 2006 .
[104] P. Morrison. Hamiltonian description of Vlasov dynamics: Action-angle variables for the continuous spectrum , 1999 .
[105] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[106] T. M. O'Neil,et al. The Collisionless Damping of Nonlinear Plasma Oscillations. , 1965 .
[107] J. Barr'e,et al. Corrigendum: Algebraic damping in the one-dimensional Vlasov equation , 2011, 1104.1890.
[108] Pierre-Louis Lions,et al. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .
[109] Cédric Villani,et al. H-theorem and beyond: Boltzmann's entropy in today's mathematics , 2008 .
[110] Zhiwu Lin. Instability of periodic BGK waves , 2001 .
[111] G. Popov. KAM theorem and quasimodes for Gevrey Hamiltonians , 2004 .
[112] S. B. Kuksin. Analysis of Hamiltonian PDEs , 2000 .