On Landau damping

Going beyond the linearized study has been a longstanding problem in the theory of the Landau damping. In this paper we establish Landau damping for the nonlinear Vlasov equation, for any interaction potential less singular than Coulomb. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of nonlinear echoes; sharp scattering estimates; and a Newton approximation scheme. We point out the (a priori unexpected) critical nature of the Coulomb potential and analytic regularity, which can be seen only at the nonlinear level; in this case we derive Landau damping over finite but exponentially long times. Physical implications are discussed.

[1]  D. Lynden-Bell The Stability and Vibrations of a Gas of Stars , 1962 .

[2]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[3]  G. Backus Linearized Plasma Oscillations in Arbitrary Electron Velocity Distributions , 1960 .

[4]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[5]  C. Chou The Vlasov equations , 1965 .

[6]  N. G. Van Kampen,et al.  On the theory of stationary waves in plasmas , 1955 .

[7]  D. Haar The Transport Equation in the Case of Coulomb Interactions , 1969 .

[8]  P. Gérard,et al.  Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .

[9]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non-linear vlasov equation II special cases , 1982 .

[10]  Raoul Robert,et al.  Statistical Mechanics and Hydrodynamical Turbulence , 1995 .

[11]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[12]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[13]  J. N. Hayes On non-Landau damped solutions to the linearized vlasov equation , 1963 .

[14]  Karl-Theodor Sturm Entropic Measure on Multidimensional Spaces , 2009, 0901.1815.

[15]  J. Velázquez,et al.  On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem , 2008, 0810.3456.

[16]  Gerhard Rein,et al.  Global classical solutions of the periodic Vlasov-Poisson system in three dimensions , 1991 .

[17]  Zhiwu Lin Nonlinear instability of periodic BGK waves for Vlasov‐Poisson system , 2005 .

[18]  S. K. Trehan,et al.  Plasma oscillations (I) , 1960 .

[19]  Matthias Günthier,et al.  On the perturbation problem associated to isometric embeddings of Riemannian manifolds , 1989 .

[20]  Emanuele Caglioti,et al.  Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .

[21]  G. Rein Non-linear stability for the Vlasov–Poisson system—the energy-Casimir method , 1994 .

[22]  W. Gangbo,et al.  Lagrangian dynamics on an infinite-dimensional torus: a Weak KAM theorem , 2010 .

[23]  Pierre-Emmanuel Jabin,et al.  N-particles Approximation of the Vlasov Equations with Singular Potential , 2003, math/0310039.

[24]  A. Fridman,et al.  Physics of Gravitating Systems II. Nonlinear Collective Processes: Nonlinear Waves, Solitons, Collisionless Shocks, Turbulence. Astrophysical Applications , 1984 .

[25]  P. Jabin Averaging Lemmas and Dispersion Estimates for kinetic equations , 2009 .

[26]  Reinhard Schlickeiser,et al.  Statistical Mechanics of Charged Particles , 2002 .

[27]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[28]  J. M. Greene,et al.  EXACT NON-LINEAR PLASMA OSCILLATIONS , 1957 .

[29]  Stochastic process of equilibrium fluctuations of a system with long-range interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  P. Colestock,et al.  Direct measurement of diffusion rates in high energy synchrotrons using longitudinal beam echoes. , 1996, Physical review letters.

[31]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[32]  Pierre-Henri Chavanis,et al.  Statistical Mechanics of Two-Dimensional Vortices and Collisionless Stellar Systems , 1996 .

[33]  Sergej B. Kuksin,et al.  Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .

[34]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[35]  A. Sznitman Topics in propagation of chaos , 1991 .

[36]  Roy W. Gould,et al.  PLASMA WAVE ECHO. , 1967 .

[37]  Jack Schaeffer,et al.  Time decay for solutions to the linearized Vlasov equation , 1994 .

[38]  P. Degond Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .

[39]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[40]  B. Turkington STATISTICAL EQUILIBRIUM MEASURES AND COHERENT STATES IN TWO-DIMENSIONAL TURBULENCE , 1999 .

[41]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[42]  Serge Alinhac,et al.  Pseudo-differential Operators and the Nash-Moser Theorem , 2007 .

[43]  Pierre Raphael,et al.  The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System , 2008 .

[44]  J. N. Hayes Damping of Plasma Oscillations in the Linear Theory , 1961 .

[45]  Quasilinear theory of the 2D euler equation , 1999, Physical review letters.

[46]  Dmitri D. Ryutov,et al.  Landau damping: half a century with the great discovery , 1999 .

[47]  J. Velázquez,et al.  Global Existence for the Vlasov–Poisson System in Bounded Domains , 2008, 0810.3452.

[48]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[49]  Zhiwu Lin,et al.  Small BGK Waves and Nonlinear Landau Damping , 2010, 1003.3005.

[50]  S. Hess,et al.  Landau and Non-Landau Linear Damping: Physics of the Dissipation , 2009 .

[51]  A. A. Arsen’ev Existence and uniqueness of the classical solution of vlasov's system of equations , 1975 .

[52]  G. Vekstein Landau resonance mechanism for plasma and wind-generated water waves , 1998 .

[53]  J. Fröhlich,et al.  Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field , 1999 .

[54]  A. Akhiezer Plasma electrodynamics - Vol.1: Linear theory; Vol.2: Non-linear theory and fluctuations , 1975 .

[55]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[56]  Pierre Degond,et al.  Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .

[57]  G. Backus Linearized Plasma Oscillations in Arbitrary Electron Distributions , 1960 .

[58]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[59]  V. Maslov,et al.  THE LINEAR THEORY OF LANDAU DAMPING , 1986 .

[60]  I. Kaganovich Effects of Collisions and Particle Trapping on Collisionless Heating , 1999 .

[61]  Radjesvarane Alexandre,et al.  On the Landau approximation in plasma physics , 2004 .

[62]  S. Tremaine,et al.  H-functions and mixing in violent relaxation , 1986 .

[63]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[64]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[65]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[66]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[67]  T. M. O'Neil,et al.  The Collisionless Nature of High-Temperature Plasmas , 1999 .

[68]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[69]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[70]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[71]  Microscopic Dynamics of Plasmas and Chaos , 2002 .

[72]  E. Horst,et al.  On the asymptotic growth of the solutions of the vlasov–poisson system , 1993 .

[73]  Spatially Inhomogenous On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : The linear Fokker-Planck equation , 2004 .

[74]  Michael K.-H. Kiessling,et al.  The "Jeans swindle": A true story - mathematically speaking , 2003, Adv. Appl. Math..

[75]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[76]  Yan Guo,et al.  Nonlinear instability of double-humped equilibria , 1995 .

[77]  S. Hess,et al.  Existence of non-Landau solutions for Langmuir waves , 2008 .

[78]  Yan Guo Global weak solutions of the Vlasov-Maxwell system with boundary conditions , 1993 .

[79]  J. Lott Some Geometric Calculations on Wasserstein Space , 2006, math/0612562.

[80]  M. Isichenko NONLINEAR LANDAU DAMPING IN COLLISIONLESS PLASMA AND INVISCID FLUID , 1996, chao-dyn/9612021.

[81]  M. Kiessling,et al.  Phase transitions in gravitating systems and the formation of condensed objects , 1995 .

[82]  Miller,et al.  Statistical mechanics of Euler equations in two dimensions. , 1990, Physical review letters.

[83]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[84]  F. Berz On the Theory of Plasma Waves , 1956 .

[85]  C. B. Wharton,et al.  COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES , 1964 .

[86]  M. Rosenbluth,et al.  Asymptotic Theory of Nonlinear Landau Damping and Particle Trapping in Waves of Finite Amplitude , 1998 .

[87]  S. Benachour Analyticité des solutions des équations de Vlassov-Poisson , 1989 .

[88]  P. H. Chavanis Statistical Mechanics of Violent Relaxation in Stellar Systems , 2002 .

[89]  H. Wiechen,et al.  Relaxation of collisionless self-gravitating matter : the lowest energy state for systems with non-vanishing total angular momentum , 1988 .

[90]  Jack Schaeffer,et al.  On time decay rates in landau damping , 1995 .

[91]  W. Gangbo,et al.  Hamiltonian ODEs in the Wasserstein space of probability measures , 2008 .

[92]  K. E. VIOLENT RELAXATION, PHASE MIXING, AND GRAVITATIONAL LANDAU DAMPING , 1998 .

[93]  A. W. Sáenz Long‐Time Behavior of the Electric Potential and Stability in the Linearized Vlasov Theory , 1965 .

[94]  P. Lions,et al.  Global weak solutions of Vlasov‐Maxwell systems , 1989 .

[95]  Yan Guo,et al.  Numerical study on Landau damping , 2001 .

[96]  Christian Gérard,et al.  Scattering theory of classical and quantum N-particle systems , 1997 .

[97]  Helmut Neunzert,et al.  An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .

[98]  Lev Davidovich Landau,et al.  On the vibrations of the electronic plasma , 1946 .

[99]  T. M. O'Neil,et al.  Plasma wave echo experiment , 1968 .

[100]  Takaaki Nishida,et al.  A note on a theorem of Nirenberg , 1977 .

[101]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non‐linear Vlasov equation I general theory , 1981 .

[102]  C. Villani,et al.  On Landau damping , 2009, 0904.2760.

[103]  A non-variational approach to nonlinear stability in stellar dynamics applied to the King model , 2006 .

[104]  P. Morrison Hamiltonian description of Vlasov dynamics: Action-angle variables for the continuous spectrum , 1999 .

[105]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[106]  T. M. O'Neil,et al.  The Collisionless Damping of Nonlinear Plasma Oscillations. , 1965 .

[107]  J. Barr'e,et al.  Corrigendum: Algebraic damping in the one-dimensional Vlasov equation , 2011, 1104.1890.

[108]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[109]  Cédric Villani,et al.  H-theorem and beyond: Boltzmann's entropy in today's mathematics , 2008 .

[110]  Zhiwu Lin Instability of periodic BGK waves , 2001 .

[111]  G. Popov KAM theorem and quasimodes for Gevrey Hamiltonians , 2004 .

[112]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .