Alloy‐Based Anode Materials toward Advanced Sodium‐Ion Batteries

Sodium‐ion batteries (SIBs) are considered as promising alternatives to lithium‐ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high‐energy SIBs. In this review, the recent research progress of alloy‐type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy‐based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed.

[1]  Chenghao Yang,et al.  A New rGO‐Overcoated Sb2Se3 Nanorods Anode for Na+ Battery: In Situ X‐Ray Diffraction Study on a Live Sodiation/Desodiation Process , 2017 .

[2]  F. Ciucci,et al.  Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb2S3 Anodes for Sodium Ion Batteries , 2017 .

[3]  Yong Qin,et al.  Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes , 2017 .

[4]  Wenxi Zhao,et al.  Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries. , 2017, Journal of colloid and interface science.

[5]  Yunhui Huang,et al.  In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage , 2017, Advanced materials.

[6]  Zhaoping Liu,et al.  Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. , 2017, ACS nano.

[7]  S. Jung,et al.  Advantages of Ge anode for Na-ion batteries: Ge vs. Si and Sn , 2016 .

[8]  L. Mai,et al.  Ultralong Sb2Se3 Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. , 2016, ACS applied materials & interfaces.

[9]  Huajian Gao,et al.  Cycling of a Lithium‐Ion Battery with a Silicon Anode Drives Large Mechanical Actuation , 2016, Advanced materials.

[10]  Kun Fu,et al.  Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries , 2016 .

[11]  Yang Zheng,et al.  Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor‐Redistribution for High‐Energy Sodium‐Ion Batteries , 2016 .

[12]  H. Alshareef,et al.  SnSe2 2D Anodes for Advanced Sodium Ion Batteries , 2016 .

[13]  G. Cui,et al.  High performance germanium-based anode materials , 2016 .

[14]  N. Sharma,et al.  Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[15]  Z. Shen,et al.  Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. , 2016, ACS nano.

[16]  C. Low,et al.  A review of developments in the electrodeposition of tin-copper alloys , 2016 .

[17]  G. Kilibarda,et al.  Surface Analytical Study Regarding the Solid Electrolyte Interphase Composition of Nanoparticulate SnO2 Anodes for Li-Ion Batteries , 2016 .

[18]  Shouwu Guo,et al.  Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries , 2016, Scientific Reports.

[19]  J. Liang,et al.  Ultrasmall SnS nanoparticles embedded in carbon spheres: a high-performance anode material for sodium ion batteries , 2016 .

[20]  Huaiguo Xue,et al.  Tin-based nanomaterials for electrochemical energy storage , 2016 .

[21]  C. Su,et al.  High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes , 2016 .

[22]  Seungho Yu,et al.  Bismuth oxide as a high capacity anode material for sodium-ion batteries. , 2016, Chemical communications.

[23]  Y. Shin,et al.  First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries , 2016 .

[24]  Takayuki Yamamoto,et al.  Electrochemical behavior of Sn-Fe alloy film negative electrodes for a sodium secondary battery using inorganic ionic liquid Na[FSA]-K[FSA] , 2016 .

[25]  Yunhui Huang,et al.  A Si/C nanocomposite anode by ball milling for highly reversible sodium storage , 2016 .

[26]  H. Cui,et al.  Three dimensional self-assembly ZnSb nanowire balls with good performance as sodium ions battery anode , 2016 .

[27]  B. Hwang,et al.  Experimental Study on Sodiation of Amorphous Silicon for Use as Sodium-Ion Battery Anode , 2016 .

[28]  J. Syzdek,et al.  Microwave Plasma Chemical Vapor Deposition of SbxOy/C negative electrodes and their compatibility with lithium and sodium Hückel salts—based, tailored electrolytes , 2016 .

[29]  Heon-Cheol Shin,et al.  Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries , 2016 .

[30]  Byung Chul Yeo,et al.  A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[31]  Chenghua Sun,et al.  Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia , 2016 .

[32]  Zhaoqiang Li,et al.  Low‐Temperature Solution‐Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries , 2016 .

[33]  Hyun-Wook Lee,et al.  Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries , 2016 .

[34]  L. Madec,et al.  Impact of the salts and solvents on the SEI formation in Sb/Na batteries: An XPS analysis , 2016 .

[35]  M. Dahbi,et al.  Impact of the Cut-Off Voltage on Cyclability and Passive Interphase of Sn-Polyacrylate Composite Electrodes for Sodium-Ion Batteries , 2016 .

[36]  Shenglin Xiong,et al.  Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries , 2016 .

[37]  Xiaoyan He,et al.  The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries , 2016 .

[38]  Qingsheng Zeng,et al.  Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. , 2016, Small.

[39]  Hui Xu,et al.  Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries , 2016 .

[40]  H. Ahn,et al.  Long-term cycling stability of porous Sn anode for sodium-ion batteries , 2016 .

[41]  S. Karmakar,et al.  Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries , 2016 .

[42]  Mohammad Omaish Ansari,et al.  Facile and Scale Up Synthesis of Red Phosphorus-Graphitic Carbon Nitride Heterostructures for Energy and Environment Applications , 2016, Scientific Reports.

[43]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[44]  Jong‐Heun Lee,et al.  Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. , 2016, Nanoscale.

[45]  Zhichuan J. Xu,et al.  An Air‐Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties , 2016 .

[46]  C. Doh,et al.  Study of tin-sulphur-carbon nanocomposites based on electrically exploded tin as anode for sodium battery , 2016 .

[47]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[48]  Dong Zhou,et al.  In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery. , 2016, ChemSusChem.

[49]  Zhiguo Wang,et al.  Monolayer black phosphorus as potential anode materials for Mg-ion batteries , 2016, Journal of Materials Science.

[50]  G. Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[51]  Kyeongse Song,et al.  SnS 3D Flowers with Superb Kinetic Properties for Anodic Use in Next-Generation Sodium Rechargeable Batteries. , 2016, Small.

[52]  M. Hayashi,et al.  Electrochemical properties of Sn-Co electrode with various kinds of binder materials for sodium ion batteries , 2016 .

[53]  Shuru Chen,et al.  Room‐Temperature Synthesis of Mesoporous Sn/SnO2 Composite as Anode for Sodium‐Ion Batteries , 2016 .

[54]  H. Fjellvåg,et al.  How Crystallite Size Controls the Reaction Path in Nonaqueous Metal Ion Batteries: The Example of Sodium Bismuth Alloying , 2016 .

[55]  Jinkui Feng,et al.  Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets , 2016 .

[56]  Kangli Wang,et al.  Layered SnS2 cross-linked by carbon nanotubes as a high performance anode for sodium ion batteries , 2016 .

[57]  Lianzhou Wang,et al.  Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage , 2016 .

[58]  Zi‐Feng Ma,et al.  Integrating in situ solvothermal approach synthesized nanostructured tin anchored on graphene sheets into film anodes for sodium-ion batteries , 2016 .

[59]  Xing-long Wu,et al.  Graphene Nanosheets Suppress the Growth of Sb Nanoparticles in an Sb/C Nanocomposite to Achieve Fast Na Storage , 2016 .

[60]  S. Dou,et al.  Bismuth sulfide: A high-capacity anode for sodium-ion batteries , 2016 .

[61]  Chris J. Pickard,et al.  Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries , 2016 .

[62]  Haizhu Sun,et al.  In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[63]  Tingting Liu,et al.  A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries , 2016 .

[64]  Chao Luo,et al.  Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials. , 2016, ACS applied materials & interfaces.

[65]  Koichi Yamashita,et al.  Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface , 2016 .

[66]  E. Timofeeva,et al.  Potential-Resolved In Situ X-ray Absorption Spectroscopy Study of Sn and SnO2 Nanomaterial Anodes for Lithium-Ion Batteries , 2016 .

[67]  Ji-Hoon Jang,et al.  Cross‐Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium‐Ion Batteries , 2016 .

[68]  Zhian Zhang,et al.  Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries. , 2016, Chemistry.

[69]  L. Luo,et al.  Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity , 2016 .

[70]  Bingan Lu,et al.  Core–Shell Ge@Graphene@TiO2 Nanofibers as a High‐Capacity and Cycle‐Stable Anode for Lithium and Sodium Ion Battery , 2016 .

[71]  A. J. Morris,et al.  Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy , 2016, Journal of the American Chemical Society.

[72]  F. Du,et al.  Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance. , 2016, Chemistry.

[73]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[74]  Yuliang Cao,et al.  Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. , 2016, ACS applied materials & interfaces.

[75]  Sang-Min Lee,et al.  ZnSb/C composite anode in additive free electrolyte for sodium ion batteries , 2015 .

[76]  J. Santos-Peña,et al.  An electrochemical study of Fe1.18Sb1.82 as negative electrode for sodium ion batteries , 2015 .

[77]  Huisheng Peng,et al.  Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. , 2015, ACS nano.

[78]  Yongchang Liu,et al.  Tin Nanodots Encapsulated in Porous Nitrogen‐Doped Carbon Nanofibers as a Free‐Standing Anode for Advanced Sodium‐Ion Batteries , 2015, Advanced materials.

[79]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[80]  Kangli Wang,et al.  Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries , 2015 .

[81]  Wenping Sun,et al.  Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. , 2015, ACS nano.

[82]  Haiyan Lu,et al.  Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries , 2015 .

[83]  Huan Liu,et al.  Facile synthesis of high performance hard carbon anode materials for sodium ion batteries , 2015 .

[84]  Zhongyuan Liu,et al.  Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation , 2015, Nanotechnology.

[85]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[86]  Jia-ling Wang,et al.  A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries , 2015 .

[87]  Zhian Zhang,et al.  SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries , 2015 .

[88]  Yan Yu,et al.  A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries , 2015, Advanced science.

[89]  D. Deng,et al.  Amorphous Bimetallic Co3Sn2 Nanoalloys Are Better Than Crystalline Counterparts for Sodium Storage , 2015 .

[90]  Xianluo Hu,et al.  Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries , 2015 .

[91]  Xiaobo Ji,et al.  One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[92]  Yunhui Huang,et al.  Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery , 2015 .

[93]  A. Manthiram,et al.  Bi0.94Sb1.06S3 Nanorod Cluster Anodes for Sodium-Ion Batteries: Enhanced Reversibility by the Synergistic Effect of the Bi2S3–Sb2S3 Solid Solution , 2015 .

[94]  Xiaobo Ji,et al.  Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries , 2015 .

[95]  H. Usui,et al.  Electrochemical behavior of SiO as an anode material for Na-ion battery , 2015 .

[96]  Ozkan Yildiz,et al.  Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. , 2015, ACS applied materials & interfaces.

[97]  A. Manthiram,et al.  Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. , 2015, Chemical communications.

[98]  Y. Meng,et al.  Investigating the Energy Storage Mechanism of SnS2-rGO Composite Anode for Advanced Na-Ion Batteries , 2015 .

[99]  G. Hwang,et al.  A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries , 2015 .

[100]  Seungchul Kim,et al.  Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations , 2015 .

[101]  Xiao Liu,et al.  A first-principles study of sodium adsorption and diffusion on phosphorene. , 2015, Physical chemistry chemical physics : PCCP.

[102]  Xiaobo Ji,et al.  Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries , 2015 .

[103]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[104]  Hyuk-Sang Kwon,et al.  High-Performance Sb/Sb2 O3 Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries. , 2015, Small.

[105]  C. Nithya Bi2 O3 @Reduced Graphene Oxide Nanocomposite: An Anode Material for Sodium-Ion Storage. , 2015, ChemPlusChem.

[106]  Xiulin Fan,et al.  Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode. , 2015, ACS applied materials & interfaces.

[107]  O. Malyi,et al.  Phosphorene as an anode material for Na-ion batteries: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[108]  Xiaobo Ji,et al.  Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase , 2015 .

[109]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[110]  S. Ye,et al.  Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries , 2015 .

[111]  Y. Kang,et al.  Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries , 2015, Nano Research.

[112]  Arumugam Manthiram,et al.  High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries , 2015 .

[113]  L. Stievano,et al.  Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries , 2015 .

[114]  E. D. Jackson,et al.  Electrochemical performance of electrodeposited Zn4Sb3 films for sodium-ion secondary battery anodes. , 2015, ACS applied materials & interfaces.

[115]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[116]  M. Hersam,et al.  Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. , 2015, ACS nano.

[117]  Huanlei Wang,et al.  Sodiation vs. lithiation phase transformations in a high rate – high stability SnO2 in carbon nanocomposite , 2015 .

[118]  Tao Gao,et al.  Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. , 2015, ACS nano.

[119]  Huawei Song,et al.  Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability , 2015 .

[120]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[121]  Liwei Lin,et al.  High Performance 3D Si/Ge Nanorods Array Anode Buffered by TiN/Ti Interlayer for Sodium‐Ion Batteries , 2015 .

[122]  S. Dou,et al.  Bismuth: A new anode for the Na-ion battery , 2015 .

[123]  Haiyan Lu,et al.  Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries , 2015 .

[124]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[125]  Gang Zhang,et al.  Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. , 2015, Nano letters.

[126]  Hongsen Li,et al.  High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. , 2015, Nanoscale.

[127]  Yan Zhang,et al.  Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries , 2015 .

[128]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[129]  Youngjin Kim,et al.  SnSe alloy as a promising anode material for Na-ion batteries. , 2015, Chemical communications.

[130]  J. Parisi,et al.  Size-Dependent Strain of Sn/SnOx Core/Shell Nanoparticles , 2014 .

[131]  Charles E. Johnson,et al.  The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies , 2014 .

[132]  Hai Liu,et al.  Mechanical Properties, Electronic Structures, and Potential Applications in Lithium Ion Batteries: A First-Principles Study toward SnSe2 Nanotubes , 2014 .

[133]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[134]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[135]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[136]  Tae-Hee Kim,et al.  Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries. , 2014, ACS nano.

[137]  Mi Yan,et al.  Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. , 2014, ACS applied materials & interfaces.

[138]  Gengfeng Zheng,et al.  Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. , 2014, Nanoscale.

[139]  Andres Castellanos-Gomez,et al.  Environmental instability of few-layer black phosphorus , 2014, 1410.2608.

[140]  V. Battaglia,et al.  Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries , 2014 .

[141]  Jin-Woo Park,et al.  Charge–discharge properties of tin dioxide for sodium-ion battery , 2014 .

[142]  Kai Cui,et al.  Activation with Li enables facile sodium storage in germanium. , 2014, Nano letters.

[143]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[144]  Sagar Mitra,et al.  Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode , 2014 .

[145]  Shu-Lei Chou,et al.  Small things make a big difference: binder effects on the performance of Li and Na batteries. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[146]  A. Heller,et al.  Tin-germanium alloys as anode materials for sodium-ion batteries. , 2014, ACS applied materials & interfaces.

[147]  Tae-Hee Kim,et al.  Electrochemical Properties of Electrodeposited Sn Anodes for Na-Ion Batteries , 2014 .

[148]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[149]  Zaiping Guo,et al.  Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. , 2014, ACS nano.

[150]  S. Manzhos,et al.  Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study , 2014, 1407.0545.

[151]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[152]  M. Hayashi,et al.  Sodium-Ion Insertion/Extraction Properties of Sn-Co Anodes and Na Pre-Doped Sn-Co Anodes , 2014 .

[153]  A. Manthiram,et al.  High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[154]  Guoxiu Wang,et al.  Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery , 2014 .

[155]  Sudip Kumar Batabyal,et al.  Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes , 2014 .

[156]  Yuyan Shao,et al.  Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage , 2014, Advanced materials.

[157]  Charles E. Johnson,et al.  The reaction mechanism of FeSb(2) as anode for sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[158]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[159]  Y. Meng,et al.  Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu2Sb Anodes , 2014 .

[160]  S. Jung,et al.  Atom-Level Understanding of the Sodiation Process in Silicon Anode Material. , 2014, The journal of physical chemistry letters.

[161]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[162]  H. Usui,et al.  Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition , 2014 .

[163]  J. Xie,et al.  Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route , 2014 .

[164]  Do-Hwan Nam,et al.  Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries , 2014 .

[165]  S. Manzhos,et al.  Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon , 2014, 1401.7795.

[166]  Yuyan Shao,et al.  Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. , 2014, Nano letters.

[167]  S. Manzhos,et al.  Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations , 2013 .

[168]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[169]  S. Manzhos,et al.  A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets , 2013 .

[170]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[171]  Y. Meng,et al.  Electrochemical properties of tin oxide anodes for sodium-ion batteries , 2013 .

[172]  Yuyan Shao,et al.  Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. , 2013, Nano letters.

[173]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[174]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[175]  Raymond R. Unocic,et al.  Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries , 2013 .

[176]  J. Goodenough,et al.  Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. , 2013, ACS applied materials & interfaces.

[177]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[178]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[179]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[180]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[181]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[182]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[183]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[184]  Guoxiu Wang,et al.  SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries , 2013 .

[185]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[186]  H. Ahn,et al.  SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. , 2013, Chemical communications.

[187]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[188]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[189]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[190]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[191]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[192]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[193]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[194]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[195]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[196]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[197]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[198]  C. Marín,et al.  Electronic structure of antimony selenide (Sb2Se3) from GW calculations , 2011 .

[199]  Yunfeng Shi,et al.  High electrical conductivity antimony selenide nanocrystals and assemblies. , 2010, Nano letters.

[200]  U. Gösele,et al.  Pulsed Vapor‐Liquid‐Solid Growth of Antimony Selenide and Antimony Sulfide Nanowires , 2009 .

[201]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of Chemical Research.

[202]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[203]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[204]  Peter Müller-Buschbaum,et al.  Silicon based lithium-ion battery anodes: A chronicle perspective review , 2017 .

[205]  C. Villevieille,et al.  FeSn2 and CoSn2 Electrode Materials for Na-Ion Batteries , 2016 .

[206]  R. D. Groot,et al.  Band gap narrowing of SnS2 superstructures with improved hydrogen production , 2016 .

[207]  Jun Lu,et al.  Ultrafast and Highly Reversible Sodium Storage in Zinc‐Antimony Intermetallic Nanomaterials , 2016 .

[208]  L. Monconduit,et al.  The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries , 2015 .

[209]  Ning Zhang,et al.  Ultrasmall Sn Nanoparticles Embedded in Carbon as High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[210]  J. Xie,et al.  Few‐Layered SnS2 on Few‐Layered Reduced Graphene Oxide as Na‐Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability , 2015 .

[211]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[212]  L. Ellis,et al.  In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells , 2014 .

[213]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .