Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach

This paper develops a nonparametric approach to examine how portfolio and consumption choice depends on variables that forecast time-varying investment opportunities. I estimate single-period and multiperiod portfolio and consumption rules of an investor with constant relative risk aversion and a one-month to twenty-year horizon. The investor allocates wealth to the NYSE index and a 30-day Treasury bill. I find that the portfolio choice varies significantly with the dividend yield, default premium, term premium, and lagged excess return. Furthermore, the optimal decisions depend on the investor's horizon and rebalancing frequency.

[1]  Bruno Solnik The performance of international asset allocation strategies using conditioning information , 1993 .

[2]  Donald B. Keim,et al.  Predicting returns in the stock and bond markets , 1986 .

[3]  R. Shiller,et al.  The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors , 1986 .

[4]  Pierluigi Balduzzi,et al.  Transaction costs and predictability: some utility cost calculations , 1999 .

[5]  Gusztáv Morvai Portfolio choice based on the empirical distribution , 1992, Kybernetika.

[6]  J. Campbell Stock Returns and the Term Structure , 1985 .

[7]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[8]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[9]  N. Barberis Investing for the Long Run When Returns are Predictable , 2000 .

[10]  E. Fama,et al.  Dividend yields and expected stock returns , 1988 .

[11]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[12]  W. Härdle Applied Nonparametric Regression , 1991 .

[13]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[14]  G. William Schwert,et al.  Asset returns and inflation , 1977 .

[15]  R. M. Clark A calibration curve for radiocarbon dates , 1975, Antiquity.

[16]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[17]  E. Fama,et al.  BUSINESS CONDITIONS AND EXPECTED RETURNS ON STOCKS AND BONDS , 1989 .

[18]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[19]  W. Härdle Robust regression function estimation , 1984 .

[20]  Campbell R. Harvey,et al.  The Variation of Economic Risk Premiums , 1990, Journal of Political Economy.

[21]  Walter E. Hoadley The Business and Economic Statistics Section , 1951 .

[22]  Campbell R. Harvey Time-Varying Conditional Covariances in Tests of Asset Pricing Models , 1989 .

[23]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[24]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[25]  L. Hansen,et al.  Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models , 1982 .

[26]  Wolfgang Härdle,et al.  Strong Uniform Convergence Rates in Robust Nonparametric Time Series Analysis and Prediction: Kernel , 1986 .

[27]  R. Stambaugh,et al.  On the Predictability of Stock Returns: An Asset-Allocation Perspective , 1995 .

[28]  K. French,et al.  Expected stock returns and volatility , 1987 .

[29]  J. Poterba,et al.  Mean Reversion in Stock Prices: Evidence and Implications , 1987 .

[30]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[31]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[32]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[33]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[34]  J. Siegel,et al.  Stocks for the Long Run , 1994 .

[35]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[36]  Gusztáv Morvai Empirical log-optimal portfolio selection , 1991 .

[37]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[38]  O. Linton,et al.  Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically , 1994 .

[39]  M. Pritsker Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models , 1998 .

[40]  E. Fama,et al.  Permanent and Temporary Components of Stock Prices , 1988, Journal of Political Economy.

[41]  Timothy G. Conley,et al.  Short-term interest rates as subordinated diffusions , 1997 .

[42]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[43]  L. Hansen LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF , 1982 .

[44]  Luis M. Viceira,et al.  Consumption and Portfolio Decisions When Expected Returns are Time Varying , 1996 .