nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi

[1]  Andrea Crisanti,et al.  A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae , 2015, Nature Biotechnology.

[2]  A. James,et al.  Impact of Genetic Modification of Vector Populations on the Malaria Eradication Agenda , 2016 .

[3]  Ethan Bier,et al.  Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi , 2015, Proceedings of the National Academy of Sciences.

[4]  D. O’brochta,et al.  Post-Integration Silencing of piggyBac Transposable Elements in Aedes aegypti , 2013, PloS one.

[5]  Francisco Prosdocimi,et al.  The Genome of Anopheles darlingi, the main neotropical malaria vector , 2013, Nucleic acids research.

[6]  John M. Marshall,et al.  A Synthetic Gene Drive System for Local, Reversible Modification and Suppression of Insect Populations , 2013, Current Biology.

[7]  J. Meredith,et al.  Next-Generation Site-Directed Transgenesis in the Malaria Vector Mosquito Anopheles gambiae: Self-Docking Strains Expressing Germline-Specific phiC31 Integrase , 2013, PloS one.

[8]  A. James,et al.  Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development , 2012, Proceedings of the National Academy of Sciences.

[9]  Kosuke Yusa,et al.  Mobilization of giant piggyBac transposons in the mouse genome , 2011, Nucleic acids research.

[10]  D. O’brochta,et al.  piggyBac transposon remobilization and enhancer detection in Anopheles mosquitoes , 2011, Proceedings of the National Academy of Sciences.

[11]  C. Struchiner,et al.  Novel transposable elements from Anopheles gambiae , 2011, BMC Genomics.

[12]  Andrea Crisanti,et al.  A synthetic homing endonuclease-based gene drive system in the human malaria mosquito , 2011, Nature.

[13]  A. Bradley,et al.  A hyperactive piggyBac transposase for mammalian applications , 2011, Proceedings of the National Academy of Sciences.

[14]  D. O’brochta,et al.  Intrinsic Characteristics of Neighboring DNA Modulate Transposable Element Activity in Drosophila melanogaster , 2011, Genetics.

[15]  L. Alphey,et al.  piggybac- and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse) , 2010, PLoS neglected tropical diseases.

[16]  L. Luo,et al.  Splinkerette PCR for Mapping Transposable Elements in Drosophila , 2010, PloS one.

[17]  A. James,et al.  Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site‐specific integration , 2010, Insect molecular biology.

[18]  F. Rashid,et al.  Cis-regulatory elements affecting the Nanos gene promoter in the germline stem cells. , 2010, Journal of biotechnology.

[19]  John M. Marshall,et al.  A branching process for the early spread of a transposable element in a diploid population , 2008, Journal of mathematical biology.

[20]  D. O’brochta,et al.  Post-integration stability of piggyBac in Aedes aegypti. , 2007, Insect biochemistry and molecular biology.

[21]  F. Catteruccia,et al.  Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi , 2007, Molecular Genetics and Genomics.

[22]  A. James,et al.  nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti , 2007, Proceedings of the National Academy of Sciences.

[23]  A. James,et al.  Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. , 2006, Insect biochemistry and molecular biology.

[24]  L. Alphey,et al.  High efficiency site‐specific genetic engineering of the mosquito genome , 2006, Insect molecular biology.

[25]  F. Gould,et al.  Transposable element insertion location bias and the dynamics of gene drive in mosquito populations , 2005, Insect molecular biology.

[26]  Min Han,et al.  Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice , 2005, Cell.

[27]  A. James,et al.  Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti. , 2005, Insect biochemistry and molecular biology.

[28]  A. James Gene drive systems in mosquitoes: rules of the road. , 2005, Trends in parasitology.

[29]  D. O’brochta,et al.  An Active Transposable Element, Herves, From the African Malaria Mosquito Anopheles gambiae Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AY462096. , 2005, Genetics.

[30]  A. James,et al.  Gene vector and transposable element behavior in mosquitoes , 2003, Journal of Experimental Biology.

[31]  D. O’brochta,et al.  Post-integration behavior of a Mos1 mariner gene vector in Aedes aegypti. , 2003, Insect biochemistry and molecular biology.

[32]  Dahua Chen,et al.  A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell , 2003, Development.

[33]  E. Wimmer,et al.  A versatile vector set for animal transgenesis , 2000, Development Genes and Evolution.

[34]  M Klingler,et al.  Quantitative analysis of gene function in the Drosophila embryo. , 2000, Genetics.

[35]  A. Handler,et al.  The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Lehmann,et al.  Regulation of zygotic gene expression in Drosophila primordial germ cells , 1998, Current Biology.

[37]  D. Curtis,et al.  Identification of cis-acting sequences that control nanos RNA localization. , 1996, Developmental biology.

[38]  C. Bauser,et al.  Precise excision of TTAA‐specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera , 1996, Insect molecular biology.

[39]  D. Curtis,et al.  nanos is an evolutionarily conserved organizer of anterior-posterior polarity. , 1995, Development.

[40]  M. G. Kidwell,et al.  Transposable elements as population drive mechanisms: specification of critical parameter values. , 1994, Journal of medical entomology.

[41]  M. G. Kidwell,et al.  Can transposable elements be used to drive disease refractoriness genes into vector populations? , 1992, Parasitology today.

[42]  E. Gottlieb The 3' untranslated region of localized maternal messages contains a conserved motif involved in mRNA localization. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Teri,et al.  Molecular Cloning A Laboratory Manual Second Edition Sambrook , 1989 .

[44]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .